The main objective of this study was to characterize the toxicity and genetic divergence of 18 Bacillus thuringiensis strains in the biological control of Spodoptera eridania. Bacterial suspensions were added to the S. eridania diet. Half of the selected B. thuringiensis strains caused high mortality seven days after infection. The genetic divergence of B. thuringiensis strains was assessed based on Enterobacterial Repetitive Intergenic Consensus (ERIC) and Repetitive Extragenic Palindromic (REP) sequences, and five phylogenetic groups were formed. Despite their genetic diversity B. thuringiensis strains did not show any correlation between the collection sites and toxicity to larvae. Some B. thuringiensis strains are highly toxic to S. eridania, thus highlighting the potential of their endotoxins as biopesticides.
Bacillus thuringiensis (Bt) isolates native to Maranhão (BtMA) that are highly toxic to Aedes aegypti larvae and seven standard subspecies of Bt were analyzed for genetic diversity using the rep-PRC technique with BOX, ERIC, REP, MB1, and GTG5 markers. The rep-PCR technique is considered an extremely reliable, reproducible, fast and highly discriminatory technique that may be used even among populations of the same species. These five markers revealed a total of 38 polymorphic DNA fragments for 30 BtMA isolates. Eight groups were obtained with the dendrogram generated through Pearson's correlation analysis, with four groups formed only with BtMA isolates and four comprised of isolates of BtMA and the standard subspecies toxic to dipterans and lepidopterans. Despite the high genetic diversity of BtMA, a low correlation between the collection site, gene content and mortality against A. aegypti larvae was evidenced. The clustering of the standard subspecies of Bt that were toxic against dipterans with BtMA isolates confirm the mosquitocidal action of the native isolates from Maranhão, and they can be used as an alternative for A. aegypti control and other insects of medical importance and for the control of agricultural pests.
Bacillus thuringiensis (Bt) isolates native to Maranhão (BtMA) that are highly toxic to Aedes aegypti larvae and seven standard subspecies of Bt were analyzed for genetic diversity using the rep-PRC technique with BOX, ERIC, REP, MB1, and GTG 5 markers. The rep-PCR technique is considered an extremely reliable, reproducible, fast and highly discriminatory technique that may be used even among populations of the same species. These five markers revealed a total of 38 polymorphic DNA fragments for 30 BtMA isolates. Eight groups were obtained with the dendrogram generated through Pearson's correlation analysis, with four groups formed only with BtMA isolates and four comprised of isolates of BtMA and the standard subspecies toxic to dipterans and lepidopterans. Despite the high genetic diversity of BtMA, a low correlation between the collection site, gene content and mortality against A. aegypti larvae was evidenced. The clustering of the standard subspecies of Bt that were toxic against dipterans with BtMA isolates confirm the mosquitocidal action of the native isolates from Maranhão, and they can be used as an alternative for A. aegypti control and other insects of medical importance and for the control of agricultural pests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.