The human immunodeficiency virus (HIV) integrase (IN) must covalently join the viral cDNA into a host chromosome for productive HIV infection. l-Chicoric acid (l-CA) enters cells poorly but is a potent inhibitor of IN in vitro. Using quantitative real-time polymerase chain reaction (PCR), l-CA inhibits integration at concentrations from 500 nM to 10 microM but also inhibits entry at concentrations above 1 microM. Using recombinant HIV IN, steady-state kinetic analyses with l-CA were consistent with a noncompetitive or irreversible mechanism of inhibition. IN, in the presence or absence of l-CA, was successively washed. Inhibition of IN diminished, demonstrating that l-CA was reversibly bound to the protein. These data demonstrate that l-CA is a noncompetitive but reversible inhibitor of IN in vitro and of HIV integration in vivo. Thus, l-CA likely interacts with amino acids other than those which bind substrate.
L-chicoric acid (L-CA) is a potent inhibitor of HIV integrase (IN) in vitro. In this report, the effects of a glycine to serine mutation at position 140 (G140S) on HIV IN and its effects on IN inhibitor resistance are described. HIV containing the G140S mutation showed a delay in replication. Using real-time polymerase chain reaction, the delay was secondary to a failure in integration. The mutant protein (IN(G140S)) was attenuated approximately four-fold for catalysis under equilibrium conditions compared to wild-type IN (IN(WT)) and attenuated five-fold in steady-state kinetic analysis of disintegration. Fifty percent inhibitory concentration assays were performed with IN inhibitors against both IN proteins in disintegration and strand transfer reactions. IN(G140S) was resistant to both L-CA and L-731,988, a diketoacid. HIV containing the mutation was resistant to both inhibitors as well. The G140S mutation attenuates IN activity and confers resistance to IN inhibitors, suggesting that diketoacids and L-CA interact with a similar binding site on HIV IN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.