Cardiovascular ageing contributes to cognitive impairment. However, the unique and synergistic contributions of multiple cardiovascular factors to cognitive function remain unclear because they are often condensed into a single composite score or examined in isolation. We hypothesized that vascular risk factors, electrocardiographic features and blood pressure indices reveal multiple latent vascular factors, with independent contributions to cognition. In a population-based deep-phenotyping study (n = 708, age 18–88), path analysis revealed three latent vascular factors dissociating the autonomic nervous system response from two components of blood pressure. These three factors made unique and additive contributions to the variability in crystallized and fluid intelligence. The discrepancy in fluid relative to crystallized intelligence, indicative of cognitive decline, was associated with a latent vascular factor predominantly expressing pulse pressure. This suggests that higher pulse pressure is associated with cognitive decline from expected performance. The effect was stronger in older adults. Controlling pulse pressure may help to preserve cognition, particularly in older adults. Our findings highlight the need to better understand the multifactorial nature of vascular aging.
Vascular, cardiovascular and neurovascular ageing processes contribute to cognitive impairment. However, the unique and synergistic contributions of cardiovascular factors to cognitive function remain unclear because they are often condensed into a single composite score or examined in isolation of each other. We hypothesized that vascular risk factors, electrocardiographic features and blood pressure indices reveal multiple latent vascular factors, with independent contributions to age differences in cognition. In a population-based deep-phenotyping study of cognition across the lifespan (n=708, age 18-88), path analysis revealed three latent vascular factors dissociating the autonomic nervous system response from two components of blood pressure. These three factors made unique and additive contributions to the variability in crystallized and fluid intelligence. The discrepancy in fluid relative to crystallized intelligence, indicative of cognitive decline, was associated with a latent vascular factor predominantly expressing pulse pressure, suggesting that higher pulse pressure is associated with cognitive decline from expected performance. This association varied with age, such that higher factor scores predicted a greater cognitive discrepancy in older individuals. Controlling pulse pressure may help to preserve cognitive function, particularly in older adults. Our findings highlight the need to better understand the multifactorial nature of vascular aging, its effects on neurocognitive function, and the modifiable risks of cognitive decline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.