The taxonomic group Prochlorales (Lewin 1977) Burger-Wiersma, Stal and Mur 1989 was established to accommodate a set of prokaryotic oxygenic phototrophs which, like plant, green algal and euglenoid chloroplasts, contain chlorophyll b instead of phycobiliproteins. Prochlorophytes were originally proposed (with concomitant scepticism) to be a monophyletic group sharing a common ancestry with these 'green' chloroplasts. Results from molecular sequence phylogenies, however, have suggested that Prochlorothrix hollandica is not on a lineage that leads to plastids. Our results from 16S ribosomal RNA sequence comparisons, which include new sequences from the marine picoplankter Prochlorococcus marinus and the Lissoclinum patella symbiont Prochloron sp., indicate that prochlorophytes are polyphyletic within the cyanobacterial radiation, and suggest that none of the known species is specifically related to chloroplasts. This implies that the three prochlorophytes and the green chloroplast ancestor acquired chlorophyll b and its associated structural proteins in convergent evolutionary events. We report further that the 16S rRNA gene sequence from Prochlorococcus is very similar to those of open ocean Synechococcus strains (marine cluster A), and to a family of 16S rRNA genes shotgun-cloned from plankton in the north Atlantic and Pacific Oceans.
Diverse microbial ecosystems underpin life in the sea. Among these microbes are many unicellular eukaryotes that span the diversity of the eukaryotic tree of life. However, genetic tractability has been limited to a few species, which do not represent eukaryotic diversity or environmentally relevant taxa. Here, we report on the development of genetic tools in a range of protists primarily from marine environments. We present evidence for foreign DNA delivery and expression in 13 species never before transformed and for advancement of tools for eight other species, as well as potential reasons for why transformation of yet another 17 species tested was not achieved. Our resource in genetic manipulation will provide insights into the ancestral eukaryotic lifeforms, general eukaryote cell biology, protein diversification and the evolution of cellular pathways.
We provide an analysis of the invasion and spread of the container inhabiting mosquitoes Aedes aegypti and Aedes albopictus in the Bermuda Islands. Considered eradicated in the mid-1960s, A. aegypti was redetected in 1997, and A. albopictus was first detected in 2000. Based on weekly ovitrap data collected during the early stages of the invasion, we mapped the spread of Aedes throughout the islands. We analyzed the effects of buildings and roads on mosquito density and found a significant association between density and distance to roads, but not to buildings. We discuss the potential role of human transport in the rapid spread in the islands. The temporal correlation in ovitrap collection values decreased progressively, suggesting that habitat degradation due to control efforts were responsible for local shifts in mosquito densities. We report a sharp decrease in A. aegypti presence and abundance after the arrival of A. albopictus in the year 2000. Possible mechanisms for this rapid decline at relatively low density of the second invader are discussed in the context of classical competition theory and earlier experimental results from Florida, as well as alternative explanations. We suggest that support for the competition hypothesis to account for the decline of A. aegypti is ambiguous and likely to be an incomplete explanation.
Deepened isotherms associated with El Niño resulted in severe nutrient limitation and very low kelp productivity during the last half of 1983. Frond growth rates were so low that terminal blades formed before reaching the surface, eliminating the canopy. Frond initiation rates were also extremely low, resulting in significant reductions in mean plant size. Plants growing above 10 m were more severely affected than plants at 20 m. These results suggest that nutrient pulses associated with internal waves are critical for survival of Macrocystis pyrifera in nutritionally marginal habitats in southern California.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.