RESUMOObjetivou-se investigar a aplicabilidade da técnica de estatística multivariada, análise de agrupamento, como ferramenta para identificar a similaridade nas concentrações de sais em campos irrigados. A pesquisa foi desenvolvida em três áreas, sendo uma Mata Nativa e duas irrigadas do Distrito de Irrigação Jaguaribe-Apodi (DIJA), nos municípios de Limoeiro do Norte e Quixeré, Ceará. , Cl -, Na + e K + e a RAS (razão de adsorção do sódio). A aplicação da análise de agrupamento resultou em três grupos similares quanto aos atributos estudados, havendo diferença significativa (p<0,001) entre os valores representativos da Mata Nativa e aqueles dos dois campos irrigados. A técnica de análise de agrupamento mostrou-se como ferramenta apropriada para definir a semelhança entre os atributos estudados, independentemente da sua posição no tempo ou no espaço. Tal fato expressa a aplicabilidade da mesma em estudos de identificação de áreas similares com maiores ou menores risco de salinidade.Palavras-chave: salinidade, semiárido, análise de agrupamento, irrigação-impacto Investigation of the changes in the status of soil salinity using multivariable analysis ABSTRACT This work was carried out to investigate the multivariable statistics/cluster analysis as a tool to identify the similarity of irrigated fields. The investigation was conducted in three areas. One was an undisturbed native area (MN) and the others, two irrigated field in the Irrigated District of Jaguaribe-Apodi (DIJA) situated in the municipality of Limoeiro do Norte and Quixeré, Ceará State, Brazil. Soil was sampled monthly, from December/1999 to December/2000, and also from September to December of 2001 in the depths of 0-30, 30-60 cm. The attributes considered in this study were: EC (electric conductivity of soil solution), Ca 2+ + Mg 2+, Cl -, Na + and K + and SAR (sodium adsorption ratio). The Cluster Analysis application identified the similarity of studied attributes and three homogeneous groups were identified. The studied attributes values from MN were statistically different (p < 0.001) from those of irrigated fields. According to the results, Cluster Analysis showed up as a suitable tool to define the similarity independent of sample position in time and space. This fact expresses that Cluster Analysis technique can be applied to identify the similarity in areas with high or little salinization risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.