In the original article, we neglected to include three students in the Acknowledgments section.The correct text of the Acknowledgments section should state:We thank Mr. George Metcalf for revising the English text and two Reviewers for their comments, which improved the manuscript. We also thank Simone D'Alessandro, Lorenzo Maria Iozia, and Flaminia Tito for the help with the preliminary processing of the samples.The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.
Determining food web architecture and its seasonal cycles is a precondition for making predictions about Antarctic marine biodiversity under varying climate change scenarios. However, few scientific data concerning Antarctic food web structure, the species playing key roles in web stability and the community responses to changes in sea-ice dynamics are available. Based on C and N stable isotope analysis, we describe Antarctic benthic food webs and the diet of species occurring in shallow waters (Tethys Bay, Ross Sea) before and after seasonal sea-ice break-up. We hypothesized that the increased availability of primary producers (sympagic algae) following sea-ice break-up affects the diet of species and thus food web architecture. Basal resources had distinct isotopic signatures that did not change after sea-ice break-up, enabling a robust description of consumer diets based on Bayesian mixing models. Sympagic algae had the highest δ13C (∼−14‰) and red macroalgae the lowest (∼−37‰). Consumer isotopic niches and signatures changed after sea-ice break-up, reflecting the values of sympagic algae. Differences in food web topology were also observed. The number of taxa and the number of links per taxon were higher before the thaw than after it. After sea-ice break-up, sympagic inputs allowed consumers to specialize on abundant resources at lower trophic levels. Foraging optimization by consumers led to a simpler food web, with lower potential competition and shorter food chains. However, basal resources and Antarctic species such as the bivalve Adamussium colbecki and the sea-urchin Sterechinus neumayeri were central and highly connected both before and after the sea-ice break-up, thus playing key roles in interconnecting species and compartments in the web. Any disturbance affecting these species is expected to have cascading effects on the entire food web. The seasonal break-up of sea ice in Antarctica ensures the availability of resources that are limiting for coastal communities for the rest of the year. Identification of species playing a key role in regulating food web structure in relation to seasonal sea-ice dynamics, which are expected to change with global warming, is central to understanding how these communities will respond to climate change.
Transitional waters are highly productive ecosystems, providing essential goods and services to the biosphere and human population. Human influence in coastal areas exposes these ecosystems to continuous internal and external disturbance. Nitrogen-loads can affect the composition of the resident community and the trophic relationships between and within species, including fish. Based on carbon (δ13C) and nitrogen (δ15N) stable isotope analyses of individuals, we explored the feeding behaviour of two ecologically and economically important omnivorous fish, the eel Anguilla anguilla and the seabream Diplodus annularis, in three neighbouring lakes characterised by different trophic conditions. We found that A. anguilla showed greater generalism in the eutrophic lake due to the increased contribution of basal resources and invertebrates to its diet. By contrast, the diet of D. annularis, which was mainly based on invertebrate species, became more specialised, focusing especially on polychaetes. Our results suggest that changes in macroinvertebrate and fish community composition, coupled with anthropogenic pressure, affect the trophic strategies of high trophic level consumers such as A. anguilla and D. annularis. Detailed food web descriptions based on the feeding choices of isotopic trophospecies (here Isotopic Trophic Units, ITUs) enable identification of the prey taxa crucial for the persistence of omnivorous fish stocks, thus providing useful information for their management and habitat conservation.
The Ross Sea, Antarctica, supports large populations of Emperor Penguin (Aptenodytes forsteri) and Adélie Penguin (Pygoscelis adeliae), two key meso-predators that occupy high trophic levels. Despite these species are largely studied, little is known about their diet outside the breeding period. In the present study, we investigated the intra-annual diet of Adélie and Emperor Penguins belonging to five colonies in the Ross Sea through the stable isotope analysis of different tissues (feathers and shell membranes), synthetized in different seasons, and guano that indicates recent diet. Penguin samples and prey (krill and fish) were collected during the Antarctic spring–summer. δ13C and δ15N of tissues and guano indicate spatio-temporal variation in the penguin diet. The krill consumption by Adélie Penguins was lowest in winter except in the northernmost colony, where it was always very high. It peaked in spring and remained prevalent in summer. The greatest krill contribution to Emperor Penguin’s diet occurred in summer. The relative krill and fish consumption by both species changed in relation to the prey availability, which is influenced by seasonal sea ice dynamics, and according to the penguin life cycle phases. The results highlight a strong trophic plasticity in the Adélie Penguin, whose dietary variability has been already recognized, and in the Emperor Penguin, which had not previously reported. Our findings can help understand how these species might react to resource variation due to climate change or anthropogenic overexploitation. Furthermore, data provides useful basis for future comparisons in the Ross Sea MPA and for planning conservation actions.
In order to predict the effects of climate change on polar ecosystems, disentangling mechanisms of nutrient transfer in food webs is crucial. We investigated sources of nutrients in tundra lakes, tracing their transfer through the food web and relating the observed patterns to runoff, snow coverage, and the presence of migratory geese in lake catchments. C and N content (elemental and isotopic) of several food web components including Lepidurus arcticus (Notostraca, at the top of the lake food webs) in 18 shallow Arctic lakes was compared. Terrestrial productivity and geese abundance were key biotic factors that interacted with abiotic variables (snow coverage, lake and catchment size) in determining the amount and origin of nutrient inputs, affecting the trophic interactions among aquatic species, food chain length and nutrient flow in Arctic lake food webs. Decreasing snow coverage, increasing abundance and expansion of the geese’s range are expected across the Arctic due to climate warming. By relating nutrient inputs and food web structure to snow coverage, vegetation and geese, this study contributes to our mechanistic understanding of the cascade effects of climate change in tundra ecosystems, and may help predict the response of lakes to changes in nutrient inputs at lower latitudes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.