Nowadays, the increasing interest in new market demand for alcoholic beverages has stimulated the research on useful strategies to reduce the ethanol content in beer. In this context, the use of non-Saccharomyces yeasts to produce low-alcohol or alcohol-free beer may provide an innovative approach for the beer market. In our study, four wild non-Saccharomyces yeasts, belonging to Torulaspora delbrueckii, Candida zemplinina and Zygosaccharomyces bailii species, were tested in mixed fermentation with a wild selected Saccharomyces cerevisiae strain as starters for fermentation of different commercial substrates used for production of different beer styles (Pilsner, Weizen and Amber) to evaluate the influence of the fermentative medium on starter behaviour. The results obtained showed the influence of non-Saccharomyces strains on the ethanol content and organoleptic quality of the final beers and a significant wort–starter interaction. In particular, each starter showed a different sugar utilization rate in each substrate, in consequence of uptake efficiency correlated to the strain-specific metabolic pathway and substrate composition. The most suitable mixed starter was P4-CZ3 (S. cerevisiae–C. zemplinina), which is a promising starter for the production of low-alcohol beers with pleasant organoleptic characteristics in all the tested fermentation media.
Summary
Alcohol‐free beer with isotonic properties is getting more popular and its production can be carried out by different production strategies; however, interrupted fermentation is still a challenge. Therefore, the objective of this study was to develop a low‐alcohol isotonic beer (<0.5% v/v) by interrupted fermentation. Moreover, the major objective is to compare the developed product to commercial beverages (sports drinks, ‘Pilsen' regular beer, alcohol‐free beers and low‐alcohol isotonic beer). The beverages were evaluated based on pH, alcohol content (% v/v), total titratable acidity (mEq L−1), osmolality (mOsmol kg−1), bitterness International Bitterness Units, colour European Brewery Convention, total phenolic compounds (mg L−1 gallic acid), reducing and total sugars (%) and Na and K contents (mg L−1). The developed low‐alcohol isotonic beer presented characteristics similar to sports drinks, with the advantage of being richer in phenolic compounds and suitable osmolality. Despite salts were added in its formulation, the grades attributed to all beers employed in the sensory evaluation, as well as the purchase intention did not present significant differences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.