Our data indicate that cSLPI reflects chymase activity in AR and asthma. Hence, cSLPI may serve as a biomarker for disease activity and for monitoring the efficacy of novel anti-inflammatory treatments in chymase-mediated diseases.
Biomarkers in the clinical oncology field can have tremendous therapeutic impact especially if the marker is detected before clinical symptoms. This impact can be extended to the evaluation of clinical oncology treatments allowing evaluation of potential compounds to determine their efficacy in the disease treatment. The discovery of clinical biomarkers can consume time, resources and costs. Therefore, it is important that the most effective strategies are employed to discover these biomarkers. These strategies may include the integration of available genomic, proteomic and histopathological technologies, which could reduce the costs and aid in the validation of the biomarker. Certainly the type of biomarker needed to address a particularly defined problem will drive the type of technology. However, a single biomarker to diagnose a specific cancer can be as elusive as relying on a single technology. This review examines some of the technologies used to discover biomarkers and presents the use of combinatorial technical synergies to discover and validate potential clinical oncology biomarkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.