a b s t r a c tNanotechnology has emerged as a promising area for innovative products, including insecticides. Dengue is a tropical disease which is considered a critical health problem in developing countries, due to negative impacts to the environment caused by synthetic chemicals used for vector control (Aedes aegypti). Thus, developing of natural products based insecticidal are considered very promising. On this context, the aim of the present study was to obtain an O/W nanoemulsion containing Rosmarinus officinalis L., Lamiaceae, essential oil and evaluate its larvicidal activity against A. aegypti. Low energy method was employed, allowing achievement of small droplets. The nanoemulsion also presented low polydispersity and mean droplet below 200 nm, even after 30 days of storage. Potential mortality levels were observed after 24 h (80 ± 10%) and 48 h (90 ± 10%) in A. aegypti larvae at final concentration of 250 ppm, related to R. officinalis essential oil. This study contributes to nanobiotechnology of natural products, presenting a potential larvicidal nanoemulsion prepared with R. officinalis essential oil. Moreover, nanoemulsion production involved a non-heating procedure, describing easy technique which may be useful for integrative control programs.
Essential oils are used primarily as natural preservatives, flavourants and fragrances in cosmetic products. Several pharmacopeias possess monographs of plants which are good sources of essential oils, such as Brazilian Pharmacopeia, including Illicium verum Hook. f., Schisandraceae and Rosmarinus offi cinalis. Since determination of Hydrophile-Lipophile Balance (HLB) value of essential oils appears as a critical step for development of emulsions and other semi-solid formulations, evaluation of required HLB values for I. verum and R. offi cinalis essential oils is the aim of this study. They were obtained by hydrodistillation and several emulsions were prepared by changing emulsifiers. The couple sorbitan oleate/polysorbate 20 provided best emulsions and was used at different ratios, at a total blend concentration of 5% w/w. The lowest mean droplet diameters for R. offi cinalis and I. verum emulsions were obtained at HLB 16.5 (97.12 nm) and 16.7 (246.6 nm), respectively. Moreover, emulsions with R. offi cinalis were finer and presented some bluish reflection, characteristic of nanoemulsions. The lowest turbidity value for R. offi cinalis emulsion was also obtained at HLB 16.5 (0.33). Thus, the present study describes for the first time HLB values for R. offi cinalis (16.5) and I. verum (16.7) essential oils, contributing to their physicochemical characterization and technology development of phytopharmaceuticals
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.