Compounds such as these pyrazoles, which are novel ER ligands, are well suited for combinatorial synthesis using solid-phase methods.
A variety of nonsteroidal systems can function as ligands for the estrogen receptor (ER), in some cases showing selectivity for one of the two ER subtypes, ER alpha or ER beta. We have prepared a series of heterocycle-based (furans, thiophenes, and pyrroles) ligands for the estrogen receptor and assessed their behavior as ER ligands. An aldehyde enone conjugate addition approach and an enolate alkylation approach were developed to prepare the 1,4-dione systems that were precursors to the trisubstituted and tetrasubstituted systems, respectively. All of the diones were easily converted into the corresponding furans, but formation of the thiophenes and pyrroles from the more highly substituted 1,4-diones was problematical. Of the systems investigated, the tetrasubstituted furans proved to be most interesting. They were ER alpha binding- and potency-selective agents, with the triphenolic 3-alkyl-2,4,5-tris(4-hydroxyphenyl)furans (15a-d) displaying generally higher subtype binding selectivity than the bisphenolic analogues (15f-i). Binding selectivity for ER alpha was as high as 50-70-fold, and transcriptional activation studies showed that several members of this series were ER alpha selective agonists, with the best compound [3-ethyl-2,4,5-tris(4-hydroxyphenyl)furan, 15b] having full transcriptional activity on ER alpha while being inactive on ER beta. Comparative binding affinity analysis and molecular modeling were used to investigate the preferred binding mode adopted by the furan ligands, which appears to have the C(2) phenol mimicking the important role of the A-ring of estradiol. These ligands should be useful in studying the biological roles of both ER alpha and ER beta, and they might form the basis for the development of novel estrogen pharmaceuticals.
BACKGROUNDThe mammalian target of rapamycin (mTOR) pathway is essential for tumor development, yet mTOR inhibitors have yielded modest results. This phase 1 study investigated the mTORC1/mTORC2 inhibitor CC‐223 in patients with advanced cancer.METHODSPatients with advanced solid tumors or multiple myeloma received an initial dose of 7.5‐60 mg of CC‐223, followed by oral daily dosing in 28‐day cycles until disease progression. The primary objective was to determine the safety, tolerability, nontolerated dosage, maximum tolerated dosage (MTD), and preliminary pharmacokinetic profile. Secondary objectives were to evaluate pharmacodynamic effects and to describe preliminary efficacy.RESULTSTwenty‐eight patients were enrolled and received ≥1 dose of CC‐223. The most common treatment‐related grade 3 adverse events were hyperglycemia, fatigue, and rash. Four patients had dose‐limiting toxicities, including hyperglycemia, rash, fatigue, and mucositis. Therefore, 45 mg/d was determined to be the MTD. The pharmacokinetics of CC‐223 demonstrated a mean terminal half‐life ranging from 4.86 to 5.64 hours and maximum observed plasma concentration ranging from 269 to 480 ng/mL in patients who received CC‐223 ≥45 mg/d. Phosphorylation of mTORC1/mTORC2 pathway biomarkers in blood cells was inhibited by CC‐223 ≥30 mg/d with an exposure‐response relationship. Best responses included 1 partial response (breast cancer; response duration 220 days; 30‐mg/d cohort), stable disease (8 patients across ≥15 mg/d cohorts; response duration range, 36‐168 days), and progressive disease (12 patients). The disease control rate was 32%.CONCLUSIONSCC‐223 was tolerable, with manageable toxicities. Preliminary antitumor activity, including tumor regression, and evidence of mTORC1/mTORC2 pathway inhibition were observed. Cancer 2015;121:3435–43. © 2015 American Cancer Society.
CC-115, a selective dual inhibitor of the mammalian target of rapamycin (mTOR) kinase and DNA-dependent protein kinase (DNA-PK), is undergoing Phase 1 clinical studies. Here we report the characterization of DNA-PK inhibitory activity of CC-115 in cancer cell lines. CC-115 inhibits auto-phosphorylation of the catalytic subunit of DNA-PK (DNA-PKcs) at the S2056 site (pDNA-PK S2056), leading to blockade of DNA-PK-mediated non-homologous end joining (NHEJ). CC-115 also indirectly reduces the phosphorylation of ataxia-telangiectasia mutated kinase (ATM) at S1981 and its substrates as well as homologous recombination (HR). The mTOR kinase and DNA-PK inhibitory activity of CC-115 leads to not only potent anti-tumor activity against a large panel of hematopoietic and solid cancer cell lines but also strong induction of apoptosis in a subset of cancer lines. Mechanistically, CC-115 prevents NHEJ by inhibiting the dissociation of DNA-PKcs, X-ray repair cross-complementing protein 4 (XRCC4), and DNA ligase IV from DNA ends. CC-115 inhibits colony formation of ATM-deficient cells more potently than ATM-proficient cells, indicating that inhibition of DNA-PK is synthetically lethal with the loss of functional ATM. In conclusion, CC-115 inhibits both mTOR signaling and NHEJ and HR by direct inhibition of DNA-PK. The mechanistic data not only provide selection of potential pharmacodynamic (PD) markers but also support CC-115 clinical development in patients with ATM-deficient tumors.
Purpose mTOR pathway hyperactivation occurs in nearly 90% of glioblastomas, but the allosteric mTOR inhibitor rapamycin has failed in the clinic. Here we examine the efficacy of the newly discovered ATP-competitive mTOR kinase inhibitors CC214-1 and CC214-2 in glioblastoma, identifying molecular determinants of response and mechanisms of resistance, and develop a pharmacological strategy to overcome it. Experimental design We performed in vitro and in vivo studies in glioblastoma cell lines and an intracranial model to: determine the potential efficacy of the recently reported mTOR kinase inhibitors CC214-1 (in vitro use) and CC214-2 (in vivo use) at inhibiting rapamycin resistant signaling and blocking GBM growth and a novel single cell technology, DNA Encoded Antibody Libraries, was used to identify mechanisms of resistance. Results Here we demonstrate that CC214-1 and CC214-2 suppress rapamycin-resistant mTORC1 signaling; block mTORC2 signaling and significantly inhibit the growth of glioblastomas in vitro and in vivo. EGFRvIII expression and PTEN loss enhance sensitivity to CC214 compounds, consistent with enhanced efficacy in strongly mTOR-activated tumors. Importantly, CC214 compounds potently induce autophagy, preventing tumor cell death. Genetic or pharmacologic inhibition of autophagy greatly sensitizes GBM cells and orthotopic xenografts to CC214-1 and CC214-2 induced cell death. Conclusions These results identify CC214-1 and CC214-2 as potentially efficacious mTOR kinase inhibitors in GBM and suggest a strategy for identifying patients most likely to benefit from mTOR inhibition. This study also demonstrates a central role for autophagy in preventing mTOR-kinase inhibitor-mediated tumor cell death, and suggests a pharmacological strategy for overcoming it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.