Ehlers-Danlos syndrome (EDS) type VII results from defects in the conversion of type I procollagen to collagen as a consequence of mutations in the substrate that alter the protease cleavage site (EDS type VIIA and VIIB) or in the protease itself (EDS type VIIC). We identified seven additional families in which EDS type VII is either dominantly inherited (one family with EDS type VIIB) or due to new dominant mutations (one family with EDS type VIIA and five families with EDS type VIIB). In six families, the mutations alter the consensus splice junctions, and, in the seventh family, the exon is deleted entirely. The COL1A1 mutation produced the most severe phenotypic effects, whereas those in the COL1A2 gene, regardless of the location or effect, produced congenital hip dislocation and other joint instability that was sometimes very marked. Fractures are seen in some people with EDS type VII, consistent with alterations in mineral deposition on collagen fibrils in bony tissues. These new findings expand the array of mutations known to cause EDS type VII and provide insight into genotype/phenotype relationships in these genes.
Turnout, or external rotation (ER) of the lower extremities, is essential in ballet. The purpose of this study was to utilise physical examination and a biomechanical method for obtaining functional kinematic data using hip and knee joint centres to identify the relative turnout contributions from hip rotation, femoral anteversion, knee rotation, tibial torsion, and other sources. Ten female dancers received a lower extremity alignment assessment, including passive hip rotation, femoral anteversion, tibial torsion, weightbearing foot alignment, and Beighton hypermobility score. Next, turnout was assessed using plantar pressure plots and three-dimensional motion analysis; participants performed turnout to ballet first position on both a plantar pressure mat and friction-reducing discs. A retro-reflective functional marker motion capture system mapped the lower extremities and hip and knee joint centres. Mean total turnout was 129±15.7° via plantar pressure plots and 135±17.8° via kinematics. Bilateral hip ER during turnout was 49±10.2° (36% of total turnout). Bilateral knee ER during turnout was 41±5.9° (32% of total turnout). Hip ER contribution to total turnout measured kinematically was less than expected compared to other studies, where hip ER was determined without functional kinematic data. Knee ER contributed substantially more turnout than expected or previously reported. This analysis method allows precise assessment of turnout contributors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.