Most clinical tools for measuring spasticity, such as the Modified Ashworth Scale (MAS) and the Modified Tardieu Scale (MTS), are not sufficiently accurate or reliable. This study investigated the clinimetric properties of an instrumented spasticity assessment. Twenty-eight children with spastic cerebral palsy (CP) and 10 typically developing (TD) children were included. Six of the children with CP were retested to evaluate reliability. To quantify spasticity in the gastrocnemius (GAS) and medial hamstrings (MEH), three synchronized signals were collected and integrated: surface electromyography (sEMG); joint-angle characteristics; and torque. Muscles were manually stretched at low velocity (LV) and high velocity (HV). Spasticity parameters were extracted from the change in sEMG and in torque between LV and HV. Reliability was determined with intraclass-correlation coefficients and the standard error of measurement; validity by assessing group differences and correlating spasticity parameters with the MAS and MTS. Reliability was moderately high for both muscles. Spasticity parameters in both muscles were higher in children with CP than in TD children, showed moderate correlation with the MAS for both muscles and good correlation to the MTS for the MEH. Spasticity assessment based on multidimensional signals therefore provides reliable and clinically relevant measures of spasticity. Moreover, the moderate correlations of the MAS and MTS with the objective parameters further stress the added value of the instrumented measurements to detect and investigate spasticity, especially for the GAS.
Separate analyses of motor and functional recovery patterns after stroke confirm the importance of the first month for recovery. Contrary to common belief, the time course of recovery of the trunk is similar to the recovery of arm, leg, and functional ability.
Fatigability of hand grip strength in persons with multiple sclerosis is not influenced by hand dominance or muscle strength, but there is a correlation with disease progression. Differences in fatigability between healthy controls and, in particular, persons with multiple sclerosis with high EDSS, were found during sustained, but not during dynamic, contractions.
More than one-third of PwMS showed walking-related motor fatigue during the 6MWT, with its prevalence greatest in more disabled persons (up to 51%) and in those with progressive MS phenotype (up to 50%). Identification of walking-related motor fatigue may lead to better-tailored interventions.
The disparity of protocols and outcome measures to study different aspects of motor fatigability in PwMS impedes direct comparison between data. Most protocols use maximal single-joint isometric contractions, with the advantage of high standardization. Because there is no head-to-head comparison of the different protocols and only limited information on psychometric properties of outcomes, there is currently no gold standard to assess motor fatigability. The disability level, disease phenotype, and studied limb may influence the assessment of motor fatigability in PwMS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.