BACKGROUND Currently, no single U.S. surveillance system can provide estimates of the burden of all types of health care–associated infections across acute care patient populations. We conducted a prevalence survey in 10 geographically diverse states to determine the prevalence of health care–associated infections in acute care hospitals and generate updated estimates of the national burden of such infections. METHODS We defined health care–associated infections with the use of National Healthcare Safety Network criteria. One-day surveys of randomly selected inpatients were performed in participating hospitals. Hospital personnel collected demographic and limited clinical data. Trained data collectors reviewed medical records retrospectively to identify health care–associated infections active at the time of the survey. Survey data and 2010 Nationwide Inpatient Sample data, stratified according to patient age and length of hospital stay, were used to estimate the total numbers of health care–associated infections and of inpatients with such infections in U.S. acute care hospitals in 2011. RESULTS Surveys were conducted in 183 hospitals. Of 11,282 patients, 452 had 1 or more health care–associated infections (4.0%; 95% confidence interval, 3.7 to 4.4). Of 504 such infections, the most common types were pneumonia (21.8%), surgical-site infections (21.8%), and gastrointestinal infections (17.1%). Clostridium difficile was the most commonly reported pathogen (causing 12.1% of health care–associated infections). Device-associated infections (i.e., central-catheter–associated bloodstream infection, catheter-associated urinary tract infection, and ventilator-associated pneumonia), which have traditionally been the focus of programs to prevent health care–associated infections, accounted for 25.6% of such infections. We estimated that there were 648,000 patients with 721,800 health care–associated infections in U.S. acute care hospitals in 2011. CONCLUSIONS Results of this multistate prevalence survey of health care–associated infections indicate that public health surveillance and prevention activities should continue to address C. difficile infections. As device- and procedure-associated infections decrease, consideration should be given to expanding surveillance and prevention activities to include other health care–associated infections.
Although culture-independent techniques have shown that the lungs are not sterile, little is known about the lung microbiome in chronic obstructive pulmonary disease (COPD). We used pyrosequencing of 16S amplicons to analyze the lung microbiome in two ways: first, using bronchoalveolar lavage (BAL) to sample the distal bronchi and air-spaces; and second, by examining multiple discrete tissue sites in the lungs of six subjects removed at the time of transplantation. We performed BAL on three never-smokers (NS) with normal spirometry, seven smokers with normal spirometry (“heathy smokers”, HS), and four subjects with COPD (CS). Bacterial 16 s sequences were found in all subjects, without significant quantitative differences between groups. Both taxonomy-based and taxonomy-independent approaches disclosed heterogeneity in the bacterial communities between HS subjects that was similar to that seen in healthy NS and two mild COPD patients. The moderate and severe COPD patients had very limited community diversity, which was also noted in 28% of the healthy subjects. Both approaches revealed extensive membership overlap between the bacterial communities of the three study groups. No genera were common within a group but unique across groups. Our data suggests the existence of a core pulmonary bacterial microbiome that includes Pseudomonas, Streptococcus, Prevotella, Fusobacterium, Haemophilus, Veillonella, and Porphyromonas. Most strikingly, there were significant micro-anatomic differences in bacterial communities within the same lung of subjects with advanced COPD. These studies are further demonstration of the pulmonary microbiome and highlight global and micro-anatomic changes in these bacterial communities in severe COPD patients.
IMPORTANCEVaccination against COVID-19 provides clear public health benefits, but vaccination also carries potential risks. The risks and outcomes of myocarditis after COVID-19 vaccination are unclear.OBJECTIVE To describe reports of myocarditis and the reporting rates after mRNA-based COVID-19 vaccination in the US. DESIGN, SETTING, AND PARTICIPANTS Descriptive study of reports of myocarditis to the Vaccine Adverse Event Reporting System (VAERS) that occurred after mRNA-based COVID-19 vaccine administration between December 2020 and August 2021 in 192 405 448 individuals older than 12 years of age in the US; data were processed by VAERS as of September 30, 2021. EXPOSURES Vaccination with BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna).MAIN OUTCOMES AND MEASURES Reports of myocarditis to VAERS were adjudicated and summarized for all age groups. Crude reporting rates were calculated across age and sex strata. Expected rates of myocarditis by age and sex were calculated using 2017-2019 claims data. For persons younger than 30 years of age, medical record reviews and clinician interviews were conducted to describe clinical presentation, diagnostic test results, treatment, and early outcomes. RESULTS Among 192 405 448 persons receiving a total of 354 100 845 mRNA-based COVID-19 vaccines during the study period, there were 1991 reports of myocarditis to VAERS and 1626 of these reports met the case definition of myocarditis. Of those with myocarditis, the median age was 21 years (IQR, 16-31 years) and the median time to symptom onset was 2 days (IQR, 1-3 days). Males comprised 82% of the myocarditis cases for whom sex was reported. The crude reporting rates for cases of myocarditis within 7 days after COVID-19 vaccination exceeded the expected rates of myocarditis across multiple age and sex strata. The rates of myocarditis were highest after the second vaccination dose in adolescent males aged 12 to 15 years (70.7 per million doses of the BNT162b2 vaccine), in adolescent males aged 16 to 17 years (105.9 per million doses of the BNT162b2 vaccine), and in young men aged 18 to 24 years (52.4 and 56.3 per million doses of the BNT162b2 vaccine and the mRNA-1273 vaccine, respectively). There were 826 cases of myocarditis among those younger than 30 years of age who had detailed clinical information available; of these cases, 792 of 809 (98%) had elevated troponin levels, 569 of 794 (72%) had abnormal electrocardiogram results, and 223 of 312 (72%) had abnormal cardiac magnetic resonance imaging results. Approximately 96% of persons (784/813) were hospitalized and 87% (577/661) of these had resolution of presenting symptoms by hospital discharge. The most common treatment was nonsteroidal anti-inflammatory drugs (589/676; 87%). CONCLUSIONS AND RELEVANCEBased on passive surveillance reporting in the US, the risk of myocarditis after receiving mRNA-based COVID-19 vaccines was increased across multiple age and sex strata and was highest after the second vaccination dose in adolescent males and young men. This risk should be ...
The results of this study demonstrate that FGF18 can stimulate repair of damaged cartilage in a setting of rapidly progressive OA in rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.