[This paper is part of the Focused Collection on Preparing and Supporting University Physics Educators.] The physics education research community has produced a wealth of knowledge about effective teaching and learning of college level physics. Based on this knowledge, many research-proven instructional strategies and teaching materials have been developed and are currently available to instructors. Unfortunately, these intensive research and development activities have failed to influence the teaching practices of many physics instructors. This paper describes interim results of a larger study to develop a model of designing materials for successful propagation. The larger study includes three phases, the first two of which are reported here. The goal of the first phase was to characterize typical propagation practices of education developers, using data from a survey of 1284 National Science Foundation (NSF) principal investigators and focus group data from eight disciplinary groups of NSF program directors. The goal of the second phase was to develop an understanding of successful practice by studying three instructional strategies that have been well propagated. The result of the first two phases is a tentative model of designing for successful propagation, which will be further validated in the third phase through purposeful sampling of additional well-propagated instructional strategies along with typical education development projects. We found that interaction with potential adopters was one of the key missing ingredients in typical education development activities. Education developers often develop a polished product before getting feedback, rely on mass-market communication channels for dissemination, and do not plan for supporting adopters during implementation. The tentative model resulting from this study identifies three key propagation activities: interactive development, interactive dissemination, and support of adopters. Interactive development uses significant feedback from potential adopters to develop a strong product suitable for use in many settings. Interactive dissemination uses personal interactions to reach and motivate potential users. Support of adopters is missing from typical propagation practice and is important to reduce the burden of implementation and increases the likelihood of successful adoption.
Background: The undergraduate science, technology, engineering, and mathematics (STEM) education community has developed a large number of innovative teaching strategies and materials, but the majority of these go unused by instructors. To help understand how to improve adoption of evidence-based education innovations, this study focuses on innovations that have become widely used in college-level STEM instruction. Innovations were identified via a questionnaire emailed to experts in STEM instruction. Descriptions of identified innovations were validated by preparing brief descriptions of each innovation and sending them to the original developers, when applicable, for feedback, and searching relevant literature. Publicly available funding data was collected for each innovation. STEM disciplines surveyed include biology, chemistry, computer science, engineering, geoscience, mathematics, and physics. Results: The 43 innovations identified were categorized based on two criteria: level of specificity (general, recognizable, branded) and type of change (pedagogical, content, both, neither). The 21 branded innovations were analyzed in more detail. The majority (14/21) require relatively modest changes in pedagogy and no changes in content. In addition, nearly all have received at least 3 million dollars in external funding over at least 10 years. Conclusions: This paper presents the full list of instructional innovations produced, which can be used by educational innovation developers to understand how their ideas fit within the broader landscape and to identify innovations in one discipline that may have promise for transfer. The findings regarding funding of the branded innovations have important implications for both educational innovation developers and funding agencies. In particular, the study indicates that a long-term mindset and access to long-term funding are vital for broad adoption of new teaching innovations.
Background: Every year, significant effort and resources are expended around the world to develop innovative instructional strategies and materials to improve undergraduate Science, Technology, Engineering, and Mathematics education. Despite convincing evidence of efficacy with respect to student learning, most will struggle to become successfully propagated to reach widespread use. To help developers improve their propagation plans and to encourage sustained adoption, we have developed an assessment instrument that supports development, analysis, evaluation, and refinement of propagation plans. Results: Based on our synthesis of the literature, our analysis of successfully propagated innovations, and our analysis of a subset of funded NSF CCLI proposals, we argue that a primary reason for the lack of adoption is that developers focus their efforts on dissemination (spreading the word) instead of propagation (promoting successful adoption). To help developers focus on development of more effective propagation plans, the Designing for Sustained Adoption Assessment Instrument (DSAAI) is based on three primary bodies of literature: (1) change theory, (2) instructional systems, and (3) effective propagation strategies. The assessment instrument was designed in the form of a rubric to help education developers identify strengths and areas for improvement of their propagation plans. Based on extensive testing across several different groups of users, the DSAAI is divided into four main sections: identification of product type, features of target instructional strategies and/or materials, a propagation activities checklist, and aspects of the propagation plans that influence likelihood of successful propagation. Conclusions: The instrument has proven useful for a variety of audiences to evaluate and improve proposals and current research projects. Education developers who provided feedback during the development of this assessment instrument found it useful because it helped them not only evaluate their propagation plans but also become aware of other strategies they could use to help develop and disseminate products of current projects, as well as strategies for supporting future adopters. Grant writing consultants can use it to provide feedback to their clients, and funding agencies can use parts of the DSAAI framework to evaluate grant proposals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.