Silicones (polydimethylsiloxanes) find use in a wide variety of industrial and consumer product applications because of their outstanding properties. Potential human exposure to silicones occurs in the work place during manufacturing and product formulation, as well as through the normal use of consumer products containing them.The entry of silicones into various environmental compartments raised health and safety concerns from potential exposure and mandated numerous environmental and toxicological studies. Such studies require qualitative and quantitative determination of silicone species at trace levels. However, the ubiquitous presence of silicones coupled with their unique chemistry renders their analysis at trace levels challenging.This paper provides a consolidated account of various aspects of silicones that must be borne in mind to obtain reliable data. The following topics are discussed: differences in the chemistry of silicones vs carbon; precautions in sample handling to avoid losses and inadvertent chemical transformation; potential sources for artifacts and interferences that could lead to systematic errors and data misinterpretation; sources for background and the need for matrix matched blank experiments; distinguishing silicones from silicates to avoid overestimation; potential for incorrect structural assignments; preventing inadvertent contamination; and questionable claims on the presence of silicones in biological matrices including that of silicone implants.
New poly(fluorene-thiophene) alternating copolymers are described in which either the dioctylfluorene or bithiophene units in poly(9,9-dioctylfluorene-alt-bithiophene) (F8T2) are replaced by other fluorene or thiophene-based groups, respectively. Improvements in solubility are realized when the bithiophene unit of F8T2 is replaced by dihexylterthiophene or dihexylpentathiophene units. Melting temperatures are also lowered by 50 – 100°C in these polymers when compared to F8T2. Replacement of the bithiophene unit of F8T2 with a dihexylpentathiophene unit also results in a significant improvement in hysteresis (< 2 V vs. 3.5 – 5 V for F8T2). Initial results are also reported on the thermal cleavage of the C8 side groups of F8T2, which yields an insoluble polymeric semiconductor film that continues to exhibit transistor switching characteristics as part of a bottom gate device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.