Recent evidence demonstrates that tobacco smoking causes an imbalance in bone turnover, leading to lower bone mass and making bone vulnerable to osteoporosis and fracture. Tobacco smoke influences bone mass indirectly through alteration of body weight, parathyroid hormone-vitamin D axis, adrenal hormones, sex hormones, and increased oxidative stress on bony tissues. Also, tobacco smoke influences bone mass through a direct effect on osteogenesis and angiogenesis of bone. A RANKL-RANK-OPG pathway is an essential regulatory pathway for bone metabolism and its importance lies in its interaction with most of the pathophysiologic mechanisms by which smoking influences bone mass. Both first- and secondhand smoke adversely affect bone mass; smoking cessation seems to reverse the effect of smoking and improve bone health. Recent advances in research on bone turnover markers could advance scientific knowledge regarding the mechanisms by which smoking may influence bone mass.
Cancer and its treatment are frequently associated with cancer-related cognitive impairment (CRCI). While CRCI has been linked to chemotherapy, there is increasing evidence that the condition may start prior to treatment and for some, remain unresolved after active treatment and into survivorship. Although the pathophysiology of the condition is complex, alterations in systemic cytokines, signaling molecules activated in response to infection or injury that trigger inflammation, are a possible mechanism linked to cognitive dysfunction in breast cancer and other conditions. Given the conflicting results in the literature, the lack of focus on domain-specific cognitive testing, and the need for a longer time period given the multiple modalities of standard treatments for early-stage breast cancer, this longitudinal study was conducted to address these gaps. Methods We assessed 75 women with early-stage breast cancer at five points over two years, starting prior to the initial chemotherapy through 24 months after chemotherapy initiation. Measures included a validated computerized evaluation of domain-specific cognitive functioning and a 17-plex panel of plasma cytokines. Linear mixed-effects models were applied to test the relationships of clinical variables and cytokine concentrations to each cognitive domain. Results: Levels and patterns of cytokine concentrations varied over time: six of the 17 cytokines (IL-6, IL-12, IL-17, G-CSF, MIPS-1β, and MCP-1) had the most variability. Some cytokine levels (e.g., IL-6) increased during chemotherapy but then decreased subsequently, while others (e.g., IL-17) consistently declined from baseline over time. There were multiple relationships among cytokines and cognition, which varied over time. At baseline, elevated concentrations of G-CSF and reduced concentrations of IL-17 were associated with faster psychomotor speed. At the second time-point (prior to the mid-chemotherapy), multiple cytokines had significant associations with psychomotor speed, complex attention, executive function, verbal memory, cognitive flexibility, composite memory and visual memory. Six months after chemotherapy initiation and at the one-year point, there were multiple, significant relationships among cytokines and multiple cognitive. At two years, fewer significant relationships were noted; however, lower concentrations of IL-7, a hematopoietic cytokine, were associated with better psychomotor speed, complex attention, and memory (composite, verbal and visual). MCP-1 was inversely associated with psychomotor speed and complex attention and higher levels of MIP-1β were related to better complex attention. Conclusion Levels and patterns of cytokines changed over time and demonstrated associations with domain-specific cognitive functioning that varied over time. The observed associations between cytokines and cognitive performance provides evidence that not only prototypical cytokines (i.e. IL-6, TNF-α, and IL1-β) but also cytokines from multiple classes may contribute to the inflammatory environm...
Purpose The aim of the present study was to explore clusters of psychoneurological symptoms and inflammation (levels of C-reactive protein) over time in a cohort of women with early-stage breast cancer. Specifically, we examined the relationships among affective symptoms (depression, anxiety, fatigue, sleep disturbances, pain, and perceived stress), domains of cognitive performance, and levels of peripheral C-reactive over a period of 2 years. Methods This was a prospective, longitudinal study of 77 women diagnosed with early-stage breast cancer. Data collection, including symptom questionnaires, performance-based cognitive testing, and blood draws, took place at 5 time points: prior to initiating adjuvant chemotherapy, prior to the fourth chemotherapy treatment, and at 6, 12, and 24 months after the initiation of chemotherapy. Results Exploratory factor analysis with varimax orthogonal rotation was used to examine the covariance among symptoms at each visit. Using the factor scores and weighted sums, three clusters were identified: global cognition, affective symptoms, and cognitive efficiency. Peripheral levels of C-reactive protein were inversely correlated with the cognitive efficiency factor across time. Conclusions The findings suggest that objectively measured domains of cognitive function occur independently of other affective symptoms that are commonly reported by women with breast cancer in long-term survivorship. The cognitive efficiency symptom cluster may be amenable to interventions targeted to biological influences that reduce levels of C-reactive protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.