Fibropapillomatosis (FP), a transmissible neoplastic disease of marine turtles characterized by a likely herpesviral primary etiology, has emerged as an important disease in green sea turtles (Chelonia mydas) over the past three decades. The objectives of this study were to determine the suitability of three different chelonid fibropapilloma-associated herpesvirus (CFPHV) gene targets in polymerase chain reaction (PCR) assays of affected tissues; to explore the presence of CFPHV in non-affected skin from turtles with and without tumors; and to better understand tissue localization of the CFPHV genome in a tumor-free turtle by evaluating CFPHV presence in microanatomic tissue sites. Two aggregations of green sea turtles (Chelonia mydas) in Puerto Rico were evaluated, with six sampling intervals over the three-year period 2004–2007. Primary and nested PCR for three different herpesviral gene targets- DNA polymerase, capsid maturation protease, and membrane glycoprotein B- were performed on 201 skin biopsies taken from 126 turtles with and without external tumors. Laser capture microdissection and nested PCR were used to identify tissue localizations of CFPHV in skin from a normal turtle. Of the turtles sampled in Manglar Bay, 30.5% had tumors; at the relatively more pristine Culebrita, 5.3% of turtles sampled had tumors. All three PCR primer combinations successfully amplified CFPHV from tumors, and from normal skin of both tumored and tumor-free turtles. Via nested PCR, the polymerase gene target proved superior to the other two gene targets in the positive detection of CFPHV DNA. CFPHV infection may be common relative to disease incidence, supporting the idea that extrinsic and/or host factors could play a transforming role in tumor expression. Laser capture microdissection revealed CFPHV in skin from a tumor-free turtle, harbored in both epidermal and dermal tissues. Identification of CFPHV harbored in a non-epidermal site (dermis) of a tumor-free turtle indicates that virus is latent in a non-tumored host.
Common bottlenose dolphins (Tursiops truncatus) exposed to freshwater or low salinity (<10 practical salinity units; PSU) for prolonged periods of time have been documented to develop skin lesions, corneal edema and electrolyte abnormalities, and in some instances they have died. Here we review a case of an out-of-habitat subadult, female common bottlenose dolphin that remained in a freshwater lake in Seminole, Alabama for at least 32 days. Due to concerns for the dolphin's health a rescue was initiated. At the time of rescue bloodwork results indicated minor electrolyte abnormalities (hyponatremia, hypochloremia, hypoosmolality). Renal function was not affected (normal creatinine and urea nitrogen) and all other bloodwork parameters (hemogram; serum biochemistry analytes) were within normal limits. The dolphin was deemed healthy enough for immediate relocation and release. A satellite-linked tag was attached to the dorsal fin to track the dolphin following its relocation to a nearby brackish water bay (Perdido Bay, AL), a known habitat for bottlenose dolphins. Twelve weeks following release, the dolphin was found dead as a result of a fisheries interaction (peracute underwater entrapment). A full necropsy was conducted and there was complete resolution of the skin pallor and skin lesions and no evidence of chronic renal or central nervous system lesions. Post-mortem analysis of vitreous humor (used as a proxy for serum analytes and to determine post-mortem interval) was challenging to interpret and has not been validated in dolphins. This supports the need for future research in cetaceans to establish a species-specific approach. Elevated barium (Ba) concentrations in tooth dentin corresponded to increased seasonal freshwater discharge patterns, confirming repeated annual exposure to low salinity conditions prior to death and indicating freshwater exposure may pose an ongoing threat to dolphins in the region. This case provides a unique opportunity to follow the progression of prolonged freshwater exposure and recovery in a bottlenose dolphin and highlights that dolphins in nearshore habitats face a combination of persistent natural and human associated threats.
Seven species of helminths and six species of arthropods are reported from 23 of 40 brown pelicans, Pelecanus occidentalis, collected from various localities in Puerto Rico. Helminth parasites include three nematodes (Contracaecum multipapillatu m, Contracaecum mexicanum, and Eustrongylides sp.), three trematodes (Galactosomum darbyi, Mesostephanus appendiculatoide s, and Ribeiroia ondatrae), and one cestode (Tetrabothrium sulae). Arthropod parasites include Colpocephalum occidentalis, Neottialges apunctatus, Ornithodoros capensis, Phalacrodectus pelecani, Phalacrodectus punctatissimus, and Phalacrodectus sp. The presence of R. ondatrae in the brown pelican is a new species host record, and P. pelecani, P. punctatissimu s and N. apunctatus are new subspecies host records. C. multipapillatum, C. mexicanum, G. darbyi and M. appendiculatoide s are new locality records for Puerto Rico, and N. apunctatus, P. pelecani, P. punctatissimus and T. sulae are new locality records for the Caribbean. Necrosis produced by C. multipapillatu m, C. mexicanum, and R. ondatrae may have contributed to the emaciation and death of the brown pelicans examined in the present study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.