Autism spectrum disorder (ASD) is characterized by core social deficits. Prognosis is poor, in part, because existing medications target only associated ASD features. Emerging evidence suggests that the neuropeptide oxytocin (OXT) may be a blood-based biomarker of social functioning and a possible treatment for ASD. However, prior OXT treatment trials have produced equivocal results, perhaps because of variability in patients' underlying neuropeptide biology, but this hypothesis has not been tested. Using a double-blind, randomized, placebo-controlled, parallel design, we tested the efficacy and tolerability of 4-wk intranasal OXT treatment (24 International Units, twice daily) in 32 children with ASD, aged 6-12 y. When pretreatment neuropeptide measures were included in the statistical model, OXT compared with placebo treatment significantly enhanced social abilities in children with ASD [as measured by the trial's primary outcome measure, the Social Responsiveness Scale (SRS)]. Importantly, pretreatment blood OXT concentrations also predicted treatment response, such that individuals with the lowest pretreatment OXT concentrations showed the greatest social improvement. OXT was well tolerated, and its effects were specific to social functioning, with no observed decrease in repetitive behaviors or anxiety. Finally, as with many trials, some placebo-treated participants showed improvement on the SRS. This enhanced social functioning was mirrored by a posttreatment increase in their blood OXT concentrations, suggesting that increased endogenous OXT secretion may underlie this improvement. These findings indicate that OXT treatment enhances social abilities in children with ASD and that individuals with pretreatment OXT signaling deficits may stand to benefit the most from OXT treatment.A utism spectrum disorder (ASD) is a brain disorder of early childhood onset. ASD is characterized by core social communication impairments as well as restricted, repetitive behaviors, which jeopardize the development of appropriate social skills and the maintenance of social relationships (1). Despite being one of the most devastating childhood disorders in terms of prevalence [1 in 68 US children (2)] and societal cost [$236 billion expended annually in the United States (3)], ASD pathophysiology remains poorly understood. Consequently, there are no approved medications that enhance social abilities in individuals with ASD.
The social impairments of autism spectrum disorder (ASD) have a major impact on quality of life, yet there are no medications that effectively treat these core social behavior deficits. Preclinical research suggests that arginine vasopressin (AVP), a neuropeptide involved in promoting mammalian social behaviors, may be a possible treatment for ASD. Using a double-blind, randomized, placebo-controlled, parallel study design, we tested the efficacy and tolerability of a 4-week intranasal AVP daily treatment in 30 children with ASD. AVP-treated participants aged 6 to 9.5 years received the maximum daily target dose of 24 International Units (IU); participants aged 9.6 to 12.9 years received the maximum daily target dose of 32 IU. Intranasal AVP treatment compared to placebo enhanced social abilities as assessed by change from baseline in this phase 2 trial’s primary outcome measure, the Social Responsiveness Scale, 2nd Edition total score (SRS-2 T score; F1,20 = 9.853; P = 0.0052; ηp2 = 33.0%; Cohen’s d = 1.40). AVP treatment also diminished anxiety symptoms and some repetitive behaviors. Most of these findings were more pronounced when we accounted for pretreatment AVP concentrations in blood. AVP was well tolerated with minimal side effects. No AVP-treated participants dropped out of the trial, and there were no differences in the rate of adverse events reported between treatment conditions. Last, no changes from baseline were observed in vital signs, electrocardiogram tracings, height and body weight, or clinical chemistry measurements after 4 weeks of AVP treatment. These preliminary findings suggest that AVP has potential for treating social impairments in children with ASD.
BackgroundAutism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by restricted, stereotyped behaviors and impairments in social communication. Although the underlying biological mechanisms of ASD remain poorly understood, recent preclinical research has implicated the endogenous cannabinoid (or endocannabinoid), anandamide, as a significant neuromodulator in rodent models of ASD. Despite this promising preclinical evidence, no clinical studies to date have tested whether endocannabinoids are dysregulated in individuals with ASD. Here, we addressed this critical gap in knowledge by optimizing liquid chromatography-tandem mass spectrometry methodology to quantitatively analyze anandamide concentrations in banked blood samples collected from a cohort of children with and without ASD (N = 112).FindingsAnandamide concentrations significantly differentiated ASD cases (N = 59) from controls (N = 53), such that children with lower anandamide concentrations were more likely to have ASD (p = 0.041). In keeping with this notion, anandamide concentrations were also significantly lower in ASD compared to control children (p = 0.034).ConclusionsThese findings are the first empirical human data to translate preclinical rodent findings to confirm a link between plasma anandamide concentrations in children with ASD. Although preliminary, these data suggest that impaired anandamide signaling may be involved in the pathophysiology of ASD.
Potassium channel interacting proteins (KChIPs) are members of a family of calcium binding proteins that interact with Kv4 potassium (K + ) channel primary subunits and also act as transcription factors. The Kv4 subunit is a primary K + channel pore-forming subunit, which contributes to the somatic and dendritic A-type currents throughout the nervous system. These A-type currents play a key role in the regulation of neuronal excitability and dendritic processing of incoming synaptic information. KChIP3 is also known as calsenilin and as the transcription factor, downstream regulatory element antagonist modulator (DREAM), which regulates a number of genes including prodynorphin. KChIP3 and Kv4 primary channel subunits are highly expressed in hippocampus, an area of the brain important for learning and memory. Through its various functions, KChIP3 may play a role in the regulation of synaptic plasticity and learning and memory. We evaluated the role of KChIP3 in a hippocampus-dependent memory task, contextual fear conditioning. Male KChIP3 knockout (KO) mice showed significantly enhanced memory 24 hours after training as measured by percent freezing. In addition, we found that membrane association and interaction with Kv4.2 of KChIP3 protein was significantly decreased and nuclear KChIP3 expression was increased six hours after the fear conditioning training paradigm with no significant change in KChIP3 mRNA. In addition, prodynorphin mRNA expression was significantly decreased six hours after fear conditioning training in wild-type (WT) but not in KO animals. These data suggest a role for regulation of gene expression by KChIP3/DREAM/calsenilin in consolidation of contextual fear conditioning memories.Theories of Hebbian-type synaptic plasticity propose that strengthening of synaptic connections is dependent on coincident activity in pre-and postsynaptic neurons. Research has focused on regulation of transmitter release and receptor function at the synapse; however, changes in neuronal excitability during learning processes have received less attention. Modulation of postsynaptic excitability, via regulation of ion channels, is another possible mechanism for modification of the threshold for induction of synaptic plasticity. Transient outward or A-type currents are generally responsible for regulation of both neuronal excitability and the inter-spike interval in neurons in both vertebrate and invertebrate systems. A-type currents control action potential broadening, back-propagating action potentials in CA1 pyramidal cells, and are regulated by neuromodulators and long-term potentiation (LTP) (Hoffman et
Core deficits in social functioning are associated with various neuropsychiatric and neurodevelopmental disorders, yet biomarker identification and the development of effective pharmacological interventions has been limited. Recent data suggest the intriguing possibility that endogenous cannabinoids, a class of lipid neuromodulators generally implicated in the regulation of neurotransmitter release, may contribute to species-typical social functioning. Systematic study of the endogenous cannabinoid signaling could, therefore, yield novel approaches to understand the neurobiological underpinnings of atypical social functioning. This article provides a critical review of the major components of the endogenous cannabinoid system (for example, primary receptors and effectors—Δ9-tetrahydrocannabinol, cannabidiol, anandamide and 2-arachidonoylglycerol) and the contributions of cannabinoid signaling to social functioning. Data are evaluated in the context of Research Domain Criteria constructs (for example, anxiety, chronic stress, reward learning, motivation, declarative and working memory, affiliation and attachment, and social communication) to enable interrogation of endogenous cannabinoid signaling in social functioning across diagnostic categories. The empirical evidence reviewed strongly supports the role for dysregulated cannabinoid signaling in the pathophysiology of social functioning deficits observed in brain disorders, such as autism spectrum disorder, schizophrenia, major depressive disorder, posttraumatic stress disorder and bipolar disorder. Moreover, these findings indicate that the endogenous cannabinoid system holds exceptional promise as a biological marker of, and potential treatment target for, neuropsychiatric and neurodevelopmental disorders characterized by impairments in social functioning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.