Abstract. Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 continue to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 depends on its shorter atmospheric lifetime, stronger warming potential, and variations in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the atmospheric growth rate arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these challenges, we have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations). For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (a top-down approach) to be 576 Tg CH4 yr−1 (range 550–594, corresponding to the minimum and maximum estimates of the model ensemble). Of this total, 359 Tg CH4 yr−1 or ∼ 60 % is attributed to anthropogenic sources, that is emissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376 Tg CH4 yr−1 or 50 %–65 %). The mean annual total emission for the new decade (2008–2017) is 29 Tg CH4 yr−1 larger than our estimate for the previous decade (2000–2009), and 24 Tg CH4 yr−1 larger than the one reported in the previous budget for 2003–2012 (Saunois et al., 2016). Since 2012, global CH4 emissions have been tracking the warmest scenarios assessed by the Intergovernmental Panel on Climate Change. Bottom-up methods suggest almost 30 % larger global emissions (737 Tg CH4 yr−1, range 594–881) than top-down inversion methods. Indeed, bottom-up estimates for natural sources such as natural wetlands, other inland water systems, and geological sources are higher than top-down estimates. The atmospheric constraints on the top-down budget suggest that at least some of these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric observation-based emissions indicates a predominance of tropical emissions (∼ 65 % of the global budget, < 30∘ N) compared to mid-latitudes (∼ 30 %, 30–60∘ N) and high northern latitudes (∼ 4 %, 60–90∘ N). The most important source of uncertainty in the methane budget is attributable to natural emissions, especially those from wetlands and other inland waters. Some of our global source estimates are smaller than those in previously published budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 Tg CH4 yr−1 lower due to improved partition wetlands and other inland waters. Emissions from geological sources and wild animals are also found to be smaller by 7 Tg CH4 yr−1 by 8 Tg CH4 yr−1, respectively. However, the overall discrepancy between bottom-up and top-down estimates has been reduced by only 5 % compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methane budget include (i) a global, high-resolution map of water-saturated soils and inundated areas emitting methane based on a robust classification of different types of emitting habitats; (ii) further development of process-based models for inland-water emissions; (iii) intensification of methane observations at local scales (e.g., FLUXNET-CH4 measurements) and urban-scale monitoring to constrain bottom-up land surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; (iv) improvements of transport models and the representation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as ethane to improve source partitioning. The data presented here can be downloaded from https://doi.org/10.18160/GCP-CH4-2019 (Saunois et al., 2020) and from the Global Carbon Project.
A global network of ground-based Fourier transform spectrometers has been founded to remotely measure column abundances of CO 2 , CO, CH 4 , N 2 O and other molecules that absorb in the near-infrared. These measurements are directly comparable with the near-infrared total column measurements from space-based instruments. With stringent requirements on the instrumentation, acquisition procedures, data processing and calibration, the Total Carbon Column Observing Network (TCCON) achieves an accuracy and precision in total column measurements that is unprecedented for remotesensing observations (better than 0.25% for CO 2 ). This has enabled carbon-cycle science investigations using the TCCON dataset, and allows the TCCON to provide a link between satellite measurements and the extensive ground-based in situ network.
Abstract. The global methane (CH 4 ) budget is becoming an increasingly important component for managing realistic pathways to mitigate climate change. This relevance, due to a shorter atmospheric lifetime and a stronger warming potential than carbon dioxide, is challenged by the still unexplained changes of atmospheric CH 4 over the past decade. Emissions and concentrations of CH 4 are continuing to increase, making CH 4 the second most important human-induced greenhouse gas after carbon dioxide. Two major difficulties in reducing uncertainties come from the large variety of diffusive CH 4 sources that overlap geographically, and from the destruction of CH 4 by the very short-lived hydroxyl radical (OH). To address these difficulties, we have established a consortium of multi-disciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate research on the methane cycle, and producing regular (∼ biennial) updates of the global methane budget. This consortium includes atmospheric physicists and chemists, biogeochemists of surface and marine emissions, and socio-economists who study anthropogenic emissions. Following Kirschke et al. (2013), we propose here the first version of a living review paper that integrates results of top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models, inventories and data-driven approaches (including process-based models for estimating land surface emissions and atmospheric chemistry, and inventories for anthropogenic emissions, data-driven extrapolations). . Top-down inversions consistently infer lower emissions in China (∼ 58 Tg CH 4 yr −1 , range 51-72, −14 %) and higher emissions in Africa (86 Tg CH 4 yr −1 , range 73-108, +19 %) than bottom-up values used as prior estimates. Overall, uncertainties for anthropogenic emissions appear smaller than those from natural sources, and the uncertainties on source categories appear larger for top-down inversions than for bottom-up inventories and models.The most important source of uncertainty on the methane budget is attributable to emissions from wetland and other inland waters. We show that the wetland extent could contribute 30-40 % on the estimated range for wetland emissions. Other priorities for improving the methane budget include the following: (i) the development of process-based models for inland-water emissions, (ii) the intensification of methane observations at local scale (flux measurements) to constrain bottom-up land surface models, and at regional scale (surface networks and satellites) to constrain top-down inversions, (iii) improvements in the estimation of atmospheric loss by OH, and (iv) improvements of the transport models integrated in top-down inversions.
INTRODUCTION The influence of El Niño on climate is accompanied by large changes to the carbon cycle, and El Niño–induced variability in the carbon cycle has been attributed mainly to the tropical continents. However, owing to a dearth of observations in the tropics, tropical carbon fluxes are poorly quantified, and considerable debate exists over the dominant mechanisms (e.g., plant growth, respiration, fire) and regions (e.g., humid versus semiarid tropics) on the net carbon balance. RATIONALE The launch of the Orbiting Carbon Observatory-2 (OCO-2) shortly before the 2015–2016 El Niño, the second strongest since the 1950s, has provided an opportunity to understand how tropical land carbon fluxes respond to the warm and dry climate characteristics of El Niño conditions. The El Niño events may also provide a natural experiment to study the response of tropical land carbon fluxes to future climate changes, because anomalously warm and dry tropical environments typical of El Niño are expected to be more frequent under most emission scenarios. RESULTS The tropical regions of three continents (South America, Asia, and Africa) had heterogeneous responses to the 2015–2016 El Niño, in terms of both climate drivers and the carbon cycle. The annual mean precipitation over tropical South America and tropical Asia was lower by 3.0σ and 2.8σ, respectively, in 2015 relative to the 2011 La Niña year. Tropical Africa, on the other hand, had near equal precipitation and the same number of dry months between 2015 and 2011; however, surface temperatures were higher by 1.6σ, dominated by the positive anomaly over its eastern and southern regions. In response to the warmer and drier climate anomaly in 2015, the pantropical biosphere released 2.5 ± 0.34 gigatons more carbon into the atmosphere than in 2011, which accounts for 83.3% of the global total 3.0–gigatons of carbon (gigatons C) net biosphere flux differences and 92.6% of the atmospheric CO 2 growth-rate differences between 2015 and 2011. It indicates that the tropical land biosphere flux anomaly was the driver of the highest atmospheric CO 2 growth rate in 2015. The three tropical continents had an approximately even contribution to the pantropical net carbon flux anomaly in 2015, but had diverse dominant processes: gross primary production (GPP) reduced carbon uptake (0.9 ± 0.96 gigatons C) in tropical South America, fire increased carbon release (0.4 ± 0.08 gigatons C) in tropical Asia, and respiration increased carbon release (0.6 ± 1.01 gigatons C) in Africa. We found that most of the excess carbon release in 2015 was associated with either extremely low precipitation or high temperatures, or both. CONCLUSION Our results indicate that the global El Niño effect is a superposition of regionally specific effects. The heterogeneous climate forcing and carbon response over the three tropical continents to the 2015–2016 El Niño challenges previous studies that suggested that a single dominant process determines carbon cycle interannual variability, which could also be due to previous disturbance and soil and vegetation structure. The similarity between the 2015 tropical climate anomaly and the projected climate changes imply that the role of the tropical land as a buffer for fossil fuel emissions may be reduced in the future. The heterogeneous response may reflect differences in temperature and rainfall anomalies, but intrinsic differences in vegetation species, soils, and prior disturbance may contribute as well. A synergistic use of multiple satellite observations and a long time series of spatially resolved fluxes derived from sustained satellite observations will enable tests of these hypotheses, allow for a more process-based understanding, and, ultimately, aid improved carbon-climate model projections. Diverse climate driver anomalies and carbon cycle responses to the 2015–2016 El Niño over the three tropical continents. Schematic of climate anomaly patterns over the three tropical continents and the anomalies of the net carbon flux and its dominant constituent flux (i.e., GPP, respiration, and fire) relative to the 2011 La Niña during the 2015–2016 El Niño. GtC, gigatons C.
Abstract. The Total Carbon Column Observing Network (TCCON) produces precise measurements of the column average dry-air mole fractions of CO 2 , CO, CH 4 , N 2 O and H 2 O at a variety of sites worldwide. These observations rely on spectroscopic parameters that are not known with sufficient accuracy to compute total columns that can be used in combination with in situ measurements. The TCCON must therefore be calibrated to World Meteorological Orga-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.