Patients with progressive sarcoidosis exhibit increased expression of programmed death-1 (PD-1) receptor on their CD41 T cells. Upregulation of this marker of T cell exhaustion is associated with a reduction in the proliferative response to T cell receptor (TCR) stimulation, a defect that is reversed by PD-1 pathway blockade. Genome-wide association studies and microarray analyses have correlated signaling downstream from the TCR with sarcoidosis disease severity, but the mechanism is not yet known. Reduced phosphatidylinositol 3-kinase (PI3K)/AKT expression inhibits proliferation by inhibiting cell cycle progression. To test the hypothesis that PD-1 expression attenuates TCR-dependent activation of PI3K/AKT activity in progressive systemic sarcoidosis, we analyzed PI3K/AKT/mechanistic target of rapamycin (mTOR) expression at baseline and after PD-1 pathway blockade in CD4 1 T cells isolated from patients with sarcoidosis and healthy control subjects. We confirmed an increased percentage of PD-1 1 CD4 1 T cells and reduced proliferative capacity in patients with sarcoidosis compared with healthy control subjects (P , 0.001). There was a negative correlation with PD-1 expression and proliferative capacity (r = 20.70, P , 0.001). Expression of key mediators of cell cycle progression, including PI3K and AKT, were significantly decreased. Gene and protein expression levels reverted to healthy control levels after PD-1 pathway blockade. Reduction in sarcoidosis CD41 T cell proliferative capacity is secondary to altered expression of key mediators of cell cycle progression, including the PI3K/AKT/mTOR pathway, via PD-1 up-regulation. This supports the concept that PD-1 up-regulation drives the immunologic deficits associated with sarcoidosis severity by inducing signaling aberrancies in key mediators of cell cycle progression.
Purpose To quantitatively evaluate the changes in orientation and morphometric features of mouse retinal pigment epithelial (RPE) cells in different regions of the eye during aging. Methods We segmented individual RPE cells from whole RPE flatmount images of C57BL/6J mice (postnatal days 30 to 720) using a machine-learning method and evaluated changes in morphometric features, including our newly developed metric combining alignment and shape of RPE cells during aging. Results Mainly, the anterior part of the RPE sheet grows during aging, while the posterior part remains constant. Changes in size and shape of the peripheral RPE cells are prominent with aging as cells become larger, elongated, and concave. Conversely, the central RPE cells maintain relatively constant size and numbers with aging. Cell count in the central area and the overall cell count (approximately 50,000) were relatively constant over different age groups. RPE cells also present a specific orientation concordance that matches the shape of the specific region of the eyeball. Those cells near the optic disc or equator have a circumferential orientation to cover the round shape of the eyeball, whereas those cells in the periphery have a radial orientation and corresponding radial elongation, the extent of which increases with aging and matches with axial elongation of the eyeball. Conclusions These results suggest that the fluid RPE morphology reflects various growth rates of underlying eyeball, and RPE cells could be classified into four regional classes (near the optic disc, central, equatorial, and peripheral) according to their morphometric features.
Investigation of the Th1 immune response in sarcoidosis CD4+ T cells has revealed reduced proliferative capacity and cytokine expression upon TCR stimulation. In other disease models, such cellular dysfunction has been associated with a step-wise, progressive loss of T cell function that results from chronic antigenic stimulation. T cell exhaustion is defined by decreased cytokine production upon TCR activation, decreased proliferation, increased expression of inhibitory cell surface receptors, and increased susceptibility to apoptosis. We characterized sarcoidosis CD4+ T cell immune function in systemic and local environments among subjects undergoing disease progression compared to those experiencing disease resolution. Spontaneous and TCR-stimulated Th1 cytokine expression and proliferation assays were performed in 53 sarcoidosis subjects and 30 healthy controls. PD-1 expression and apoptosis were assessed by flow cytometry. Compared to healthy controls, sarcoidosis CD4+ T cells demonstrated reductions in Th1 cytokine expression, proliferative capacity (p < 0.05), enhanced apoptosis (p < 0.01), and increased PD-1 expression (p < 0.001). BAL-derived CD4+ T cells also demonstrated multiple facets of T cell exhaustion (p < 0.05). Reversal of CD4+ T cell exhaustion was observed in subjects undergoing spontaneous resolution (p < 0.05). Sarcoidosis CD4+ T cells exhibit loss of cellular function during progressive disease that follows the archetype of T cell exhaustion.
The purpose of this study was to extend our understanding of how aging affects normal retina function and morphology in wild-type C57BL/6J mice, by analyzing electrophysiological recordings and in vivo and post mortem anatomy. METHODS.Electroretinograms (ERGs), spectral domain optical coherence tomography (SD-OCT), and confocal scanning laser ophthalmoscope (cSLO) in vivo images were obtained from mice between the ages of 2 and 32 months in four groups: group 1 (<0.5 years), group 2 (1.0-1.5 years), group 3 (1.5-2.0 years), and group 4 (>2.0 years). Afterward, mouse bodies and eyes were weighed. Eyes were stained with hematoxylin and eosin (H&E) and cell nuclei were quantified. RESULTS.With aging, mice showed a significant reduction in both a-and b-wave ERG amplitudes in scotopic and photopic conditions. Additionally, total retina and outer nuclear layer (ONL) thickness, as measured by SD-OCT images, were significantly reduced in older groups. The cSLO images showed an increase in auto-fluorescence at the photoreceptor-RPE interface as age increases. H&E cell nuclei quantification showed significant reduction in the ONL in older ages, but no differences in the inner nuclear layer (INL) or ganglion cell layer (GCL). CONCLUSIONS.By using multiple age groups and extending the upper age limit of our animals to approximately 2.65 years (P970), we found that natural aging causes negative effects on retinal function and morphology in a gradual, rather than abrupt, process. Future studies should investigate the exact mechanisms that contribute to these gradual declines in order to discover pathways that could potentially serve as therapeutic targets.
We aimed to explore differences in the NaIO 3 -elicited responses of retinal pigment epithelium (RPE) and other retinal cells associated with mouse strains and dosing regimens.Methods: One dose of NaIO 3 at 10 or 15 mg/kg was given intravenously to adult male C57BL/6J and 129/SV-E mice. Control animals were injected with PBS. Morphologic and functional changes were characterized by spectral domain optical coherence tomography, electroretinography, histologic, and immunofluorescence techniques.Results: Injection with 10 mg/kg of NaIO 3 did not cause consistent RPE or retinal changes in either strain. Administration of 15 mg/kg of NaIO 3 initially induced a large transient increase in scotopic electroretinography a-, b-, and c-wave amplitudes within 12 hours of injection, followed by progressive structural and functional degradation at 3 days after injection in C57BL/6J mice and at 1 week after injection in 129/SV-E mice. RPE cell loss occurred in a large posterior-central lesion with a ring-like transition zone of abnormally shaped cells starting 12 hours after NaIO 3 treatment.Conclusions: NaIO 3 effects depended on the timing, dosage, and mouse strain. The RPE in the periphery was spared from damage compared with the central RPE. The large transient increase in the electroretinography was remarkable.Translational Relevance: This study is a phase T1 translational research study focusing on the development and validation of a mouse model of RPE damage. It provides a detailed foundation for future research, informing choices of mouse strain, dosage, and time points to establish NaIO 3 -induced RPE damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.