Abstract. The alteration in river flow patterns, particularly those that originate in the Himalaya, has been caused by the increased temperature and rainfall variability brought on by climate change. Due to the impending intensification of extreme climate events, as predicted by the Intergovernmental Panel on Climate Change (IPCC) in its Sixth Assessment Report, it is more essential than ever to predict changes in streamflow for future periods. Despite the fact that some research has utilised machine-learning- and deep-learning-based models to predict streamflow patterns in response to climate change, very few studies have been undertaken for a mountainous catchment, with the number of studies for the western Himalaya being minimal. This study investigates the capability of five different machine learning (ML) models and one deep learning (DL) model, namely the Gaussian linear regression model (GLM), Gaussian generalised additive model (GAM), multivariate adaptive regression splines (MARSs), artificial neural network (ANN), random forest (RF), and 1D convolutional neural network (1D-CNN), in streamflow prediction over the Sutlej River basin in the western Himalaya during the periods 2041–2070 (2050s) and 2071–2100 (2080s). Bias-corrected data downscaled at a grid resolution of 0.25∘ × 0.25∘ from six general circulation models (GCMs) of the Coupled Model Intercomparison Project Phase 6 GCM framework under two greenhouse gas (GHG) trajectories (SSP245 and SSP585) were used for this purpose. Four different rainfall scenarios (R0, R1, R2, and R3) were applied to the models trained with daily data (1979–2009) at Kasol (the outlet of the basin) in order to better understand how catchment size and the geo-hydromorphological aspects of the basin affect runoff. The predictive power of each model was assessed using six statistical measures, i.e. the coefficient of determination (R2), the ratio of the root mean square error to the standard deviation of the measured data (RSR), the mean absolute error (MAE), the Kling–Gupta efficiency (KGE), the Nash–Sutcliffe efficiency (NSE), and the percent bias (PBIAS). The RF model with rainfall scenario R3, which outperformed other models during the training (R2 = 0.90; RSR = 0.32; KGE = 0.87; NSE = 0.87; PBIAS = 0.03) and testing (R2 = 0.78; RSR = 0.47; KGE = 0.82; NSE = 0.71; PBIAS = −0.31) period, therefore was chosen to simulate streamflow in the Sutlej River in the 2050s and 2080s under the SSP245 and SSP585 scenarios. Bias correction was further applied to the projected daily streamflow in order to generate a reliable times series of the discharge. The mean ensemble of the model results shows that the mean annual streamflow of the Sutlej River is expected to rise between 2050s and 2080s by 0.79 % to 1.43 % for SSP585 and by 0.87 % to 1.10 % for SSP245. In addition, streamflow will increase during the monsoon (9.70 % to 11.41 % and 11.64 % to 12.70 %) in the 2050s and 2080s under both emission scenarios, but it will decrease during the pre-monsoon (−10.36 % to −6.12 % and −10.0 % to −9.13 %), post-monsoon (−1.23 % to −0.22 % and −5.59 % to −2.83 %), and during the winter (−21.87 % to −21.52 % and −21.87 % to −21.11 %). This variability in streamflow is highly correlated with the pattern of precipitation and temperature predicted by CMIP6 GCMs for future emission scenarios and with physical processes operating within the catchment. Predicted declines in the Sutlej River streamflow over the pre-monsoon (April to June) and winter (December to March) seasons might have a significant impact on agriculture downstream of the river, which is already having problems due to water restrictions at this time of year. The present study will therefore assist in strategy planning to ensure the sustainable use of water resources downstream by acquiring knowledge of the nature and causes of unpredictable streamflow patterns.
Abstract. The alteration in river flow patterns, particularly those that originate in the Himalayas, has been caused by the increased temperature and rainfall variability brought on by climate change. Due to the impending intensification of extreme climate events, as predicted by the Intergovernmental Panel on Climate Change (IPCC) in its sixth assessment report, it is more essential than ever to predict changes in streamflow for future periods. Despite the fact that some research has utilised machine learning-based models to predict streamflow patterns in response to climate change, very few studies have been undertaken for a mountainous catchment, with the number of studies for the western Himalaya being so small as to be considered insignificant. This study investigates the capability of different machine learning (ML) models, including the Gaussian Linear Regression Model (GLM), Gaussian Generalized Additive Model (GAM), Multivariate Adaptive Regression Splines (MARS), Artificial Neural Network (ANN), and Random Forest (RF), in streamflow prediction over the Sutlej River Basin in western Himalaya during the periods 2041–2070 (2050s) and 2071–2100 (2080s) for two greenhouse gas trajectories (SSP245 and SSP585). Coupled Model Intercomparison Project Phase 6 (CMIP6) bias corrected data downscaled at grid resolution of 0.25°× 0.25° for 6 General Circulation Models (GCMs) were used for this purpose. Four different rainfall scenarios (R0, R1, R2, and R3) were applied to the models trained with daily data (1979–2009) at Kasol (the outlet of the basin) in order to better understand how catchment size and the geo-hydro-morphological aspects of the basin affect runoff. RF model with rainfall scenario R3 which outperformed other models during the training and testing period therefore was chosen to simulate streamflow in the Sutlej River in the 2050s and 2080s under the SSP245 and SSP585 scenarios. The mean ensemble of model results show that the mean annual streamflow of the Sutlej River is expected to rise between 2050s and 2080s by 5.51 to 6.04 % for SSP585 and by 6.65 to 6.75 % for SSP245. The seasonal streamflow also is expected to increase in the 2050s and 2080s under both emission scenarios, with the exception of the pre-monsoon, where a decline in streamflow is anticipated for SSP585 in the 2080s. However, under both the emission scenarios, there seemed to be significant variation in the streamflow simulations among the individual models for various time periods. It has been found that the pattern of this variability is highly correlated with the pattern of precipitation and temperature predicted by various GCMs for future emission scenarios. The present study will therefore assist in strategy planning for ensuring the sustainable use of water resources downstream by acquiring a knowledge of the nature and causes of unpredictable streamflow patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.