Training deep neural networks (DNNs) is time-consuming. While most existing solutions try to overlap/schedule computation and communication for efficient training, this paper goes one step further by skipping computing and communication through DNN layer freezing. Our key insight is that the training progress of internal DNN layers differs significantly, and front layers often become well-trained much earlier than deep layers. To explore this, we first introduce the notion of training plasticity to quantify the training progress of internal DNN layers. Then we design KGT, a knowledge-guided DNN training system that employs semantic knowledge from a reference model to accurately evaluate individual layers' training plasticity and safely freeze the converged ones, saving their corresponding backward computation and communication. Our reference model is generated on the fly using quantization techniques and runs forward operations asynchronously on available CPUs to minimize the overhead. In addition, KGT caches the intermediate outputs of the frozen layers with prefetching to further skip the forward computation. Our implementation and testbed experiments with popular vision and language models show that KGT achieves 19%-43% training speedup w.r.t. the state-of-the-art without sacrificing accuracy.
Training deep neural networks (DNNs) is time-consuming. While most existing solutions try to overlap/schedule computation and communication for efficient training, this paper goes one step further by skipping computing and communication through DNN layer freezing. Our key insight is that the training progress of internal DNN layers differs significantly, and front layers often become well-trained much earlier than deep layers. To explore this, we first introduce the notion of training plasticity to quantify the training progress of internal DNN layers. Then we design Egeria, a knowledgeguided DNN training system that employs semantic knowledge from a reference model to accurately evaluate individual layers' training plasticity and safely freeze the converged ones, saving their corresponding backward computation and communication. Our reference model is generated on the fly using quantization techniques and runs forward operations asynchronously on available CPUs to minimize the overhead. In addition, Egeria caches the intermediate outputs of the frozen layers with prefetching to further skip the forward computation. Our implementation and testbed experiments with popular vision and language models show that Egeria achieves 19%-43% training speedup w.r.t. the state-of-the-art without sacrificing accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.