Silk fibroin, a natural multi-domain protein, has attracted great attention due to its superior mechanical properties such as ultra-high strength and stretchability, biocompatibility, as well as its versatile biodegradability and processability. It is mainly composed of b-sheet crystallites and amorphous domains. Although its strength is well known to be controlled by the dissociation of protein chains from b-sheet crystallites, the way that water as the solvent affects its strength and the reason that its theoretically predicted strength is several times higher than experimental measurement remain unclear. We perform all-atom molecular dynamics simulations on a b-sheet crystallite of Bombyx mori silk. We find that water solvent reduces the number and strength of hydrogen bonds between b-chains, and thus greatly weakens the strength of silk fibroin. By dissociating protein chains at different locations from the crystallite, we also find that the pulling strength for the interior chains is several times higher than that for the surface/corner chains, with the former being consistent with the theoretically predicted value, while the latter on par with the experimental value. It is shown that the weakest rupture strength controls the failure strength of silk fibre. Hence, this work sheds light on the role of water in the strength of silk fibroin and also provides clues on the origin of the strength difference between theory and experiment.
Simultaneous implementation of high signal‐to‐noise ratio (SNR) but low crosstalk is of great importance for weak surface electromyography (sEMG) signals when precisely driving a prosthesis to perform sophisticated activities. However, due to gaps with the curved skin during muscle contraction, many electrodes have poor compliance with skin and suffer from high bioelectrical impedance. This causes serious noise and error in the signals, especially the signals from low‐level muscle contractions. Here, the design of a compliant electrode based on an adhesive hydrogel, alginate–polyacrylamide (Alg‐PAAm) is reported, which eliminates those large gaps through the strong electrostatic interaction and abundant hydrogen bond with the skin. The obtained compliant electrode, having an ultralow bioelectrical impedance of ≈20 kΩ, can monitor even 2.1% maximal voluntary contraction (MVC) of muscle. Furthermore, benefiting from the high SNR of >5:1 at low‐level MVC, the crosstalk from irrelevant muscle is minimized through reducing the electrode size. Finally, a prosthesis is successfully demonstrated to precisely grasp a needle based on a 9 mm2 Alg‐PAAm compliant electrode. The strategy to design such compliant electrodes provides the potential for improving the quality of dynamically weak sEMG signals to precisely control prosthesis in performing purposefully dexterous activity.
Background COVID-19 has spread rapidly around the world, affecting a large percentage of the population. When lifting certain mandatory measures for an economic restart, robust surveillance must be established and implemented, with nucleic acid detection for SARS-CoV-2 as an essential component. Methods We tried to develop a one-tube detection platform based on RT-RPA (Reverse Transcription and Recombinase Polymerase Isothermal Amplification) and DNA Endonuclease-Targeted CRISPR Trans Reporter (DETECTR) technology, termed OR-DETECTR, to detect SARS-CoV-2. We designed RT-RPA primers of the RdRp and N genes following the SARS-CoV-2 gene sequence. We optimized reaction components so that the detection process could be carried out in one tube. Specificity was demonstrated by detecting nucleic acid samples from pseudoviruses from seven human coronaviruses and Influenza A (H1N1). Clinical samples were used to validate the platform and all results were compared to rRT-PCR. RNA standards and pseudoviruses diluted by different gradients were used to demonstrate the detection limit. Additionally, we have developed a lateral flow assay based on OR-DETECTR for detecting COVID-19. Results The OR-DETECTR detection process can be completed in one tube, which takes approximately 50 min. This method can specifically detect SARS-CoV-2 from seven human coronaviruses and Influenza A (H1N1), with a low detection limit of 2.5 copies/µl input (RNA standard) and 1 copy/µl input (pseudovirus). Results of six samples from SARS-CoV-2 patients, eight samples from patients with fever but no SARS-CoV-2 infection, and one mixed sample from 40 negative controls showed that OR-DETECTR is 100% consistent with rRT-PCR. The lateral flow assay based on OR-DETECTR can be used for the detection of COVID-19, and the detection limit is 2.5 copies/µl input. Conclusions The OR-DETECTR platform for the detection of COVID-19 is rapid, accurate, tube closed, easy-to-operate, and free of large instruments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.