Due to the existence of time-varying chaotic disturbances in complex applications, the chaotic synchronization of sensor systems becomes a tough issue in industry electronics fields. To accelerate the synchronization process of chaotic sensor systems, this paper proposes a super-exponential-zeroing neurodynamic (SEZN) approach and its associated controller. Unlike the conventional zeroing neurodynamic (CZN) approach with exponential convergence property, the controller designed by the proposed SEZN approach inherently possesses the advantage of super-exponential convergence property, which makes the synchronization process faster and more accurate. Theoretical analyses on the stability and convergence advantages in terms of both faster convergence speed and lower error bound within the task duration are rigorously presented. Moreover, three synchronization examples substantiate the validity of the SEZN approach and the related controller for synchronization of chaotic sensor systems. Comparisons with other approaches such as the CZN approach, show the convergence superiority of the proposed SEZN approach. Finally, extensive tests further investigate the impact on convergence performance by choosing different values of design parameter and initial state.
In this paper, a new meta-heuristic path planning algorithm, the cuckoo–beetle swarm search (CBSS) algorithm, is introduced to solve the path planning problems of heterogeneous mobile robots. Traditional meta-heuristic algorithms, e.g., genetic algorithms (GA), particle swarm search (PSO), beetle swarm optimization (BSO), and cuckoo search (CS), have problems such as the tenancy to become trapped in local minima because of premature convergence and a weakness in global search capability in path planning. Note that the CBSS algorithm imitates the biological habits of cuckoo and beetle herds and thus has good robustness and global optimization ability. In addition, computer simulations verify the accuracy, search speed, energy efficiency and stability of the CBSS algorithm. The results of the real-world experiment prove that the proposed CBSS algorithm is much better than its counterparts. Finally, the CBSS algorithm is applied to 2D path planning and 3D path planning in heterogeneous mobile robots. In contrast to its counterparts, the CBSS algorithm is guaranteed to find the shortest global optimal path in different sizes and types of maps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.