Several studies have demonstrated the value of artificial intelligence (AI) applications in breast cancer diagnosis. The systematic review of AI applications in breast cancer diagnosis includes several studies that compare breast cancer diagnosis and AI. However, they lack systematization, and each study appears to be conducted uniquely. The purpose and contributions of this study are to offer elaborative knowledge on the applications of AI in the diagnosis of breast cancer through citation analysis in order to categorize the main area of specialization that attracts the attention of the academic community, as well as thematic issue analysis to identify the species being researched in each category. In this study, a total number of 17,900 studies addressing breast cancer and AI published between 2012 and 2022 were obtained from these databases: IEEE, Embase: Excerpta Medica Database Guide-Ovid, PubMed, Springer, Web of Science, and Google Scholar. We applied inclusion and exclusion criteria to the search; 36 studies were identified. The vast majority of AI applications used classification models for the prediction of breast cancer. Howbeit, accuracy (99%) has the highest number of performance metrics, followed by specificity (98%) and area under the curve (0.95). Additionally, the Convolutional Neural Network (CNN) was the best model of choice in several studies. This study shows that the quantity and caliber of studies that use AI applications in breast cancer diagnosis will continue to rise annually. As a result, AI-based applications are viewed as a supplement to doctors’ clinical reasoning, with the ultimate goal of providing quality healthcare that is both affordable and accessible to everyone worldwide.
Right ventricular heart failure (RVHF) mostly occurs due to the failure of the left-side of the heart. RVHF is a serious disease that leads to swelling of the abdomen, ankles, liver, kidneys, and gastrointestinal (GI) tract. A total of 506 heart-failure subjects from the Faculty of Medicine, Cardiovascular Surgery Department, Ege University, Turkey, who suffered from a severe heart failure and are currently receiving support from a ventricular assistance device, were involved in the current study. Therefore, the current study explored the application of both the direct and inverse modelling approaches, based on the correlation analysis feature extraction performance of various pre-operative variables of the subjects, for the prediction of RVHF. The study equally employs both single and hybrid paradigms for the prediction of RVHF using different pre-operative variables. The visualized and quantitative performance of the direct and inverse modelling approach indicates the robust prediction performance of the hybrid paradigms over the single techniques in both the calibration and validation steps. Whereby, the quantitative performance of the hybrid techniques, based on the Nash–Sutcliffe coefficient (NC) metric, depicts its superiority over the single paradigms by up to 58.7%/75.5% and 80.3%/51% for the calibration/validation phases in the direct and inverse modelling approaches, respectively. Moreover, to the best knowledge of the authors, this is the first study to report the implementation of direct and inverse modelling on clinical data. The findings of the current study indicates the possibility of applying these novel hybridised paradigms for the prediction of RVHF using pre-operative variables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.