The localization of orexin neuropeptides in the lateral hypothalamus has focused interest on their role in ingestion. The orexigenic neurones in the lateral hypothalamus, however, project widely in the brain, and thus the physiological role of orexins is likely to be complex. Here we describe an investigation of the action of orexin A in modulating the arousal state of rats by using a combination of tissue localization and electrophysiological and behavioral techniques. We show that the brain region receiving the densest innervation from orexinergic nerves is the locus coeruleus, a key modulator of attentional state, where application of orexin A increases cell firing of intrinsic noradrenergic neurones. Orexin A increases arousal and locomotor activity and modulates neuroendocrine function. The data suggest that orexin A plays an important role in orchestrating the sleep-wake cycle.Since the discovery of the orexins (1) investigations of their functions have been guided by evidence for their hypothalamic distribution (1, 2), focusing on feeding, energy homeostasis (1, 3), and neurocrine functions (3). Our studies now show the presence of orexin A immunoreactive fibers and varicosities in extrahypothalamic areas, particularly the locus coeruleus, and demonstrate that the functions of orexin A extend beyond the hypothalamus.Orexin A and B are derived from a 130-aa precursor, prepro-orexin, which is encoded by a gene localized to human chromosome 17q21 (1). Prepro-orexin, or preprohypocretin (2), was identified in the rat hypothalamus by directional tag PCR subtractive hybridization (2) and has been shown by Northern blot analysis to be abundant in the brain and detectable at low levels in testes but not in a variety of other tissues (1, 2). Hypocretins had been identified as hypothalamic neuropeptides, but their biological role was not described (2). Nucleotide sequence alignment shows that hypocretins 1 and 2 have sequence in common with orexins A and B, respectively, but additional amino acids are present in both hypocretins. In situ hybridization maps confirm dense prepro-orexin mRNA expression in the hypothalamus (1, 2). Immunocytochemical mapping of orexin A has identified a population of mediumsized neurones within the hypothalamus, median eminence (3), and ventral thalamic nuclei of rat brain (1, 3). This distribution has been confirmed in human tissue (4).Orexin A binds with high affinity to the novel G proteincoupled receptors orexin 1 (OX 1 ) (IC 50 20 nM) and orexin 2 (OX 2 ) (IC 50 38 nM). Calcium mobilization assays in transfected HEK293 cells confirm that orexin A is a potent agonist at both OX 1 (EC 50 30 nM) and OX 2 (EC 50 34 nM) (1). Emerging evidence suggests the existence of an extensive extrahypothalamic projection of orexin-immunoreactive neurones. Peyron et al. (5), in addition to confirming the presence of immunoreactive cell somata within the hypothalamus, reported immunolabeled fibers throughout extrahypothalamic regions, including septal nuclei, substantia nigra, and raphe nucle...