The light propagation in optical waveguide must be able to maintain low propagation loss, low coupling loss and scattering loss condition, especially in the junction. In this research, a spot size converter is proposed to preserve the lowest coupling loss. This optical converter is composed of a single mode optical fiber (SiO2) including inversed taper. The optical input signal from the optical fiber is launched into photonic integrated circuits and then coupled into the Si-Slab waveguide. Furthermore, linear form with the length dependence has been studied to obtain the optimal position of optical fiber and the chip and analyzed the coupling efficiency of it. The purpose of this research is to procure the optimal form of spot size converter. The simulation result shows the coupling loss of linear form is 0.62 dB and 0.24 dB on TE and TM mode condition respectively. Along with the increase in the taper length, the coupling loss obtained tends to decrease as well. So that, it can be assumed the design of a linear form with 100 μm taper length provides the highest coupling efficie ncy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.