The exact solutions of the Schrodinger equations (SE) in the D-dimensional coordinate system have attracted the attention of many theoretical researchers in branches of quantum physics and quantum chemistry. The energy eigenvalues and the wave function are the solutions of the Schrodinger equation that implicitly represents the behavior of a quantum mechanical system. This study aimed to obtain the eigenvalues, wave functions, and thermodynamic properties of the 6-Dimensional Schrodinger equation under Double Ring-Shaped Oscillator (DRSO) and Manning-Rosen potential. The variable separation method was applied to reduce the one 6-Dimensional Schrodinger equation depending on radial and angular non-central potential into five onedimensional Schrodinger equations: one radial and five angular Schrodinger equations. Each of these onedimensional Schrodinger equations was solved using the SUSY QM method to obtain one eigenvalue and one wave function of the radial part, five eigenvalues, and five angular wave functions angular part. Some thermodynamic properties such, the vibrational mean energy 𝑈, vibrational specific heat 𝐶, vibrational free energy 𝐹, and vibrational entropy 𝑆, were obtained using the radial energy equations. The results showed that except the 𝑛𝑙1, all increment of angular quantum number decreases the energy values. Increments of all potential parameter increase the energy values. Increment of angular quantum number and potentials parameter increases the amplitude and shifts the wave functions to the left. However, the increment of 𝑛𝑙1, 𝛼, 𝜎, and 𝜌 decrease the amplitude and shift wavefunctions to the right. Moreover, the vibrational mean energy 𝑈 and free energy 𝐹 increased as the increasing value of potentials parameters, where the ω parameter has the dominant effect than the other parameters. The vibrational specific heat 𝐶 and entropy 𝑆 affected only by the 𝜔 parameter, where 𝐶 and 𝑆 decreased as the increase of 𝜔.
<p class="AbstractEnglish"><strong>Abstract:</strong> The analytical solution of the Schrodinger equation affected by Kratzer potential in Bispherical coordinate system was derived. The separable method was applied to reducing the Schrodinger equation which depends on into three one-dimensional Schrodinger equations. The Schrodinger equations as the function of with and without -deformed were solved using the SUSY QM method. The solutions were eigenvalue and eigenfunction of -deformed Schrodinger equation and eigenvalue end eigenfunction of Schrodinger equation with and without q-deformed in Bispherical coordinate system. The energy of the Schrodinger equation with -deformed equals to the Energy of Schrodinger without -deformed since the parameter becomes to zero.</p><p class="AbstrakIndonesia"><strong>Abstrak:</strong> Solusi analitik dari Persamaan Schrodinger yang dipengaruhi Potensial Kratzer dalam koordinat Bispherical telah berhasil diturunkan. Metode pemisahan variabel digunakan untuk mereduksi persamaan Schrodinger yang bergantung pada menjadi tiga persamaan Schrodinger satu dimensi. Persamaan Schrodinger fungsi terdeformasi- dan tidak terdeformasi- diselesaikan menggunakan metode SUSY QM. Solusi yang berhasil didapatkan adalah nilai eigen dan fungsi eigen persamaan Schrodinger, masing-masing untuk sistem terdeformasi- dan yang tidak terdeformasi- dalam koordinat Bispherical. Energi dari persamaan Schrodinger terdeformasi- sama dengan energi dari persamaan Schrodinger yang tidak terdeformasi- ketika sama dengan nol.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.