This study discusses the production planning system and scheduling shallots planting patterns using fuzzy time series and linear programming methods. In this study fuzzy time series to predict the number of requests and the results of predictions from fuzzy time series methods become one of the variables in the calculation of linear programming. Using supporting variables, demand data, production data, employment data, land area data, production profit data, data on the number of seedlings and planting time data are indicators used in processing the system. The system provides recommendations for cropping patterns and the number of seeds that must be planted in one period. The age of harvesting onions is ± 3-4 months from the planting process, the number of planting seeds is adjusted to the number of requests that have been predicted by using fuzzy time series and cropping pattern calculation process is carried out using linear programming. The results of this system are recommendations for farmers to plant seedlings, planting schedules, and harvest schedules to meet market demand.
<p><em>Assessment of user satisfaction with mutual fund investment applications is considered very important because it can be used as a benchmark for the success of the application, and as an evaluation material for companies in improving application services. On that basis, it is necessary to analyze the level of user satisfaction with the aim of knowing the level of satisfaction of application users, knowing aspects of services that need to be improved, and knowing aspects of services that need to be maintained. The research was conducted by distributing questionnaires based on the dimensions of the end user computing satisfaction (EUCS) method. Furthermore, the data were analyzed using percentage analysis techniques and gap analysis by applying the importance performance analysis (IPA) method. The results obtained prove that the mutual fund seed application has an average user satisfaction level of 92%, which indicates that application users are very satisfied with the investment service.</em></p><p><strong><em>Keywords</em></strong><em>: User satisfaction, Mutual Fund Seed Application, End User Computing Satisfaction (EUCS), Importance Performance Analysis (IPA).</em></p><p> </p><p>ABSTRAK. Penilaian kepuasan <em>user</em> terhadap aplikasi investasi reksadana dinilai sangat penting karena dapat dijadikan tolok ukur keberhasilan aplikasi, dan sebagai bahan evaluasi perusahaan dalam meningkatkan layanan aplikasi. Atas dasar itu perlu dilakukan analisis tingkat kepuasan pengguna dengan tujuan untuk mengetahui tingkat kepuasan pengguna aplikasi, mengetahui aspek pelayanan yang perlu ditingkatkan kinerjanya, serta mengetahui aspek pelayanan yang perlu dipertahankan kinerjanya. Penelitian dilakukan dengan menyebarkan kuisioner yang disusun berdasarkan dimensi metode <em>end user computing satisfaction </em>(EUCS)<em>.</em> Selanjutnya data dianalisis dengan teknik analisis presentase dan analisis gap dengan menerapkan metode <em>importance performance analysis </em>(IPA). Hasil yang didapatkan membuktikan bahwa aplikasi bibit reksadana memiliki presentase rata-rata tingkat kepuasan pengguna sebesar 92%, yang menunjukkan pengguna aplikasi sangat puas terhadap pelayanan investasi tersebut.</p><p><strong>Kata kunci</strong><strong><em>:</em></strong><em> </em>Kepuasan pengguna, Aplikasi Bibit Reksadana, <em>End User Computing Satisfaction </em>(EUCS), <em>Importance Performance Analysis </em>(IPA).<em></em></p>
<span>Learning class is a collection of several students in an educational institution. Every beginning of the school year the educational institution conducts a grouping class test. However, sometimes class grouping is not in accordance with the ability of students. For this reason, a system is needed to be able to see the ability of students according to the desired parameters. Determination of the weight of test scores is done using the K-Means method as a grouping method. Iteration or repetition process in the K-Means method is very important because the weight value is still very possible to change. Therefore, the repetition process is carried out to produce a value that does not change and is used to determine the ability level of students. The results of the class grouping test scores affect the ability of students. Application of K-Means method is used in building an information system grouping student admissions in an educational institution. Acceptance of students will be grouped into 3 groups of learning classes. The results of testing the system that applies K-Means method and based on data on the admission of prospective students from educational institutions have very high accuracy with an error rate of 0.074. </span>
Underprivileged scholarships are assistance provided by government or institutions to students from poor families. Scholarships can be given to all students at the education level from elementary school to higher education with certain conditions and criteria. However, in reality many scholarships are given that are not on target. This is because of the number of students who register as scholarship recipients. Therefore, it is necessary to have a decision support system in order to aid the selection process. This study aims to find appropriate system to aid the underprivileged scholarship selection. This study proposed a system which was built using PHP for programming languages and using MySQL as its database using the Simple Additive Weighting method. Data is taken from SMK Sultan Agung 1 Jombang. Data is then analyzed and tested using the Blackbox testing method. Results of this research obtained a list of the best ranks of prospective scholarship recipients which are result of processing from system. The results obtained from system will be validated by means of comparisons with manual calculations as in Table 1. The validation results show same results, so that system can be said to be valid and can replace process that is done manually.
Abstrak—Sistem Informasi yang berkembang memiliki sejumlah pertanyaan yang sering diajukan kepada customer servicedengan tingkat kesamaan pertanyaan yang tinggi. Untuk membantu hal tersebut dibuat FAQ terkait sistem informasi. FAQmemiliki banyak informasi sehingga pengguna bingung dan memerlukan waktu untuk mencari informasi. Pengguna lebih untuk mengajukan pertanyaan ke customer service. Chatbot merupakan salah cara untuk membantu pengguna dan customer service dalam masalah ini. Customer servicedapat menjawab pertanyaan secara otomatis dan pengguna dapat mengajukan pertanyaan seolah-olah bertanya kepada customer servicesecara langsung. Pada penelitian ini peneliti akan menerapkan algoritma Nazief & Adriani yang digunakan untuk melakukan stemming karena algoritma ini merupakan salah satu algoritma yang efektif dalam stemming bahasa Indonesia. Dan metode cosine similarity untuk mencari tingkat kemiripan dari pertanyaan dengan FAQyang ada dalam database FAQ. Dengan mengimplementasikan algoritma dan metode tersebut dalam chatbot dengan bantuan layanan MessangerTelegrammenghasilkan jawaban yang relative sesuai dengan yang diharapkan pengguna. Cara ini merupakan cara yang efektif untuk menjawab pertanyaan secara otomatis. Dan jika pertanyaan yang diajukan tidak menemukan jawaban atau jawaban tidak sesuai maka pertanyan akan di sampaikan dalam e-Layanan PPTI UNESA. Kata Kunci—algoritma nazief & andriani, cosine similarity, chatbot, bot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.