A new type of polymer nanoparticle (PNP) containing a high density of covalently linked doxorubicin, attached via a non-cleavable amine linkage (amine-linked Dox-PNP) was prepared. Together with a previously reported cleavable carbamate-linked Dox-PNP, this new amine-linked Dox-PNP was subsequently evaluated against free doxorubicin for its cytotoxicity and inhibitory effects on SKNSH wild-type and SKrDOX6 doxorubicin-resistant human neuroblastoma cell lines. Analogous cholesterol-containing PNPs (Chol-PNPs) and indomethacin-containing PNPs (IND-PNPs) were also synthesized and used as the non-cytotoxic controls. While neither cell line was affected by Chol-PNPs or IND-PNPs, SKrDOX6 doxorubicin-resistant cells exhibited similar cytotoxic responses to free doxorubicin and both amine- and carbamate-linked Dox-PNPs, suggesting that doxorubicin or the doxorubicin-containing polymer must be the active agent in the latter case. SKNSH wild-type cells also responded to both Dox-PNPs, albeit at a higher apparent concentration than free doxorubicin alone. The growth of SKNSH wild-type cells was significantly inhibited upon incubation with carbamate-linked Dox-PNPs, as with free doxorubicin, over a 7-day period. In comparison to free doxorubicin, carbamate-linked Dox-PNPs produced a longer (72-h) period of initial inhibition in SKrDOX6 doxorubicin-resistant cells.
Photolysis of o-methylphenyl ketones generates bis-o-quinodimethane intermediates that can be trapped in situ by dienophiles through Diels-Alder cycloadditions. This well-known photochemical process is applied to a series of six new photoreactive monomers containing bis-(o-methylphenyl ketone) functionalities combined with diacrylate and triacrylate ester monomers for the development of acrylic ester copolymer blends. Irradiation of cyclohexanone solutions of the bis-(o-methylphenyl ketone)s and acrylate esters produce thin polymer films. Solid state 13C NMR data indicated 47-100% reaction of the bis-(o-methylphenyl ketone)s, depending on experimental conditions, to yield the desired products.DSC and TGA analyses were performed to determine the glass transition temperature, T,, and onset of decomposition, T d , of the resulting polymer films. A statistical Design of Experiments approach was used to obtain a systematic understanding of the effects of experimental variables on the extent of polymerization and the final polymer properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.