Learning from limited and imbalanced data is a challenging problem in the Artificial Intelligence community. Real-time scenarios demand decision-making from rare events wherein the data are typically imbalanced. These situations commonly arise in medical applications, cybersecurity, catastrophic predictions etc. This motivates development of learning algorithms capable of learning from imbalanced data. Human brain effortlessly learns from imbalanced data. Inspired by the chaotic neuronal firing in the human brain, a novel learning algorithm namely Neurochaos Learning (NL) was recently proposed. NL is categorized in three blocks: Feature Transformation, Neurochaos Feature Extraction (CFX), and Classification. In this work, the efficacy of neurochaos feature transformation and extraction for classification in imbalanced learning is studied. We propose a unique combination of neurochaos based feature transformation and extraction with traditional ML algorithms. The explored datasets in this study revolve around medical diagnosis, banknote fraud detection, environmental applications and spoken-digit classification. In this study, experiments are performed in both high and low training sample regime. In the former, five out of nine datasets have shown a performance boost in terms of macro F1-score after using CFX features. The highest performance boost obtained is 25.97% for Statlog (Heart) dataset using CFX+Decision Tree. In the low training sample regime (from just one to nine training samples per class), the highest performance boost of 144.38% is obtained for Haberman's Survival dataset using CFX+Random Forest. NL offers enormous flexibility of combining CFX with any ML classifier to boost its performance, especially for learning tasks with limited and imbalanced data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.