A recent topic of research in natural language generation has been the development of automatic response generation modules that can automatically respond to a user's utterance in an empathetic manner. Previous research has tackled this task using neural generative methods by augmenting emotion classes with the input sequences. However, the outputs by these models may be inconsistent. We employ multitask learning to predict the emotion label and to generate a viable response for a given utterance using a common encoder with multiple decoders. Our proposed encoder-decoder model consists of a self-attention based encoder and a decoder with dot product attention mechanism to generate response with a specified emotion. We use the focal loss to handle imbalanced data distribution, and utilize the consistency loss to allow coherent decoding by the decoders. Human evaluation reveals that our model produces more emotionally pertinent responses. In addition, our model outperforms multiple strong baselines on automatic evaluation measures such as F1 and BLEU scores, thus resulting in more fluent and adequate responses.
Smart healthcare systems that make use of abundant health data can improve access to healthcare services, reduce medical costs and provide consistently high-quality patient care. Medical dialogue systems that generate medically appropriate and human-like conversations have been developed using various pre-trained language models and a large-scale medical knowledge base based on Unified Medical Language System (UMLS). However, most of the knowledge-grounded dialogue models only use local structure in the observed triples, which suffer from knowledge graph incompleteness and hence cannot incorporate any information from dialogue history while creating entity embeddings. As a result, the performance of such models decreases significantly. To address this problem, we propose a general method to embed the triples in each graph into large-scalable models and thereby generate clinically correct responses based on the conversation history using the recently recently released MedDialog(EN) dataset. Given a set of triples, we first mask the head entities from the triples overlapping with the patient’s utterance and then compute the cross-entropy loss against the triples’ respective tail entities while predicting the masked entity. This process results in a representation of the medical concepts from a graph capable of learning contextual information from dialogues, which ultimately aids in leading to the gold response. We also fine-tune the proposed Masked Entity Dialogue (MED) model on smaller corpora which contain dialogues focusing only on the Covid-19 disease named as the Covid Dataset. In addition, since UMLS and other existing medical graphs lack data-specific medical information, we re-curate and perform plausible augmentation of knowledge graphs using our newly created Medical Entity Prediction (MEP) model. Empirical results on the MedDialog(EN) and Covid Dataset demonstrate that our proposed model outperforms the state-of-the-art methods in terms of both automatic and human evaluation metrics.
Grounding dialogue on external knowledge and interpreting linguistic patterns in dialogue history context, such as ellipsis, anaphora, and co-references is critical for dialogue comprehension and generation. In this paper, we present a novel open-domain dialogue generation model which effectively utilizes the large-scale commonsense and named entity based knowledge in addition to the unstructured topic-specific knowledge associated with each utterance. We enhance the commonsense knowledge with named entity-aware structures using co-references. Our proposed model utilizes a multi-hop attention layer to preserve the most accurate and critical parts of the dialogue history and the associated knowledge. In addition, we employ a Commonsense and Named Entity Enhanced Attention Module, which starts with the extracted triples from various sources and gradually finds the relevant supporting set of triples using multi-hop attention with the query vector obtained from the interactive dialogue-knowledge module.Empirical results on two benchmark dataset demonstrate that our model significantly outperforms the state-of-the-art methods in terms of both automatic evaluation metrics and human judgment. Our code is publicly available at https://github.com/deekshaVarshney/CNTF; https://www.iitp.ac.in/-ai-nlp-ml/resources/ codes/CNTF.zip.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.