Spanish bunch groundnut varieties occupy most of the cultivated area in Asia and Africa, and these varieties lack required 2-3 weeks of fresh seed dormancy (FSD) hampering kernel quality. Genomic breeding can help to improve commercial groundnut cultivars for FSD in a shorter time with greater precision. In this regard, a recombinant inbred line (RIL) population from the cross ICGV 02266 (non-dormant) × ICGV 97045 (dormant) was developed and genotyped with a 5 K mid-density genotyping assay. A linkage map was constructed with 325 SNP loci spanning a total map length of 2335.3 cM and five major QTLs were identified on chromosomes Ah01, Ah11, Ah06, Ah16 and Ah17. Based on differential gene expression using transcriptomic information from dormant (Tifrunner) and non-dormant (ICGV 91114) genotypes, histone deacetylases, histone-lysine N-methyltransferase, cytochrome P450, protein kinases, and ethylene-responsive transcription factor were identified as key regulators involved in the hormonal regulation of dormancy. Six Kompetitive Allele Specific PCR (KASP) markers were successfully validated in the diverse panel including selected RILs of the same population and germplasm lines. These validated KASP markers could facilitate faster breeding of new varieties with desired dormancy using marker-assisted early generation selection.
Seed size is not only a yield-related trait but also an important measure to determine the commercial value of groundnut in the international market. For instance, small size is preferred in oil production, whereas large-sized seeds are preferred in confectioneries. In order to identify the genomic regions associated with 100-seed weight (HSW) and shelling percentage (SHP), the recombinant inbred line (RIL) population (Chico × ICGV 02251) of 352 individuals was phenotyped for three seasons and genotyped with an Axiom_Arachis array containing 58K SNPs. A genetic map with 4199 SNP loci was constructed, spanning a map distance of 2708.36 cM. QTL analysis identified six QTLs for SHP, with three consistent QTLs on chromosomes A05, A08, and B10. Similarly, for HSW, seven QTLs located on chromosomes A01, A02, A04, A10, B05, B06, and B09 were identified. BIG SEED locus and spermidine synthase candidate genes associated with seed weight were identified in the QTL region on chromosome B09. Laccase, fibre protein, lipid transfer protein, senescence-associated protein, and disease-resistant NBS-LRR proteins were identified in the QTL regions associated with shelling percentage. The associated markers for major-effect QTLs for both traits successfully distinguished between the small- and large-seeded RILs. QTLs identified for HSW and SHP can be used for developing potential selectable markers to improve the cultivars with desired seed size and shelling percentage to meet the demands of confectionery industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.