The aryl hydrocarbon receptor (AHR) is an environmental sensor that integrates microbial and dietary cues to influence physiological processes within the intestinal microenvironment, protecting against colitis and colitis-associated colorectal cancer development. Rapid tissue regeneration upon injury is important for the reinstatement of barrier integrity and its dysregulation promotes malignant transformation. Here we show that AHR is important for the termination of the regenerative response and the reacquisition of mature epithelial cell identity post injury in vivo and in organoid cultures in vitro. Using an integrative multi-omics approach in colon organoids, we show that AHR is required for timely termination of the regenerative response through direct regulation of transcription factors involved in epithelial cell differentiation as well as restriction of chromatin accessibility to regeneration-associated Yap/Tead transcriptional targets. Safeguarding a regulated regenerative response places AHR at a pivotal position in the delicate balance between controlled regeneration and malignant transformation.
Kinases have gained an important place in the list of vital therapeutic targets because of their overwhelming clinical success in the last two decades. Among various clinically validated kinases, the cyclin‐dependent kinases (CDK) are one of the extensively studied drug targets for clinical development. Food and Drug Administration has approved three CDK inhibitors for therapeutic use, and at least 27 inhibitors are under active clinical development. In the last decade, research and development in this area took a rapid pace, and thus the analysis of scaffold diversity is essential for future drug design. Available reviews lack the systematic study and discussion on the scaffold diversity of CDK inhibitors. Herein we have reviewed and critically analyzed the chemical diversity present in the preclinical and clinical pipeline of CDK inhibitors. Our analysis has shown that although several scaffolds represent CDK inhibitors, only the amino‐pyrimidine is a well‐represented scaffold. The three‐nitrogen framework of amino‐pyrimidine is a fundamental hinge‐binding unit. Further, we have discussed the selectivity aspects among CDKs, the clinical trial dose‐limiting toxicities, and highlighted the most advanced clinical candidates. We also discuss the changing paradigm towards selective inhibitors and an overview of ATP‐binding pockets of all druggable CDKs. We carefully analyzed the clinical pipeline to unravel the candidates that are currently under active clinical development. In addition to the plenty of dual CDK4/6 inhibitors, there are many selective CDK7, CDK9, and CDK8/19 inhibitors in the clinical pipeline.
The styryl (Ph-CH = CH-R) group is widely represented in medicinally important compounds, including drugs, clinical candidates, and molecular probes as it positively impacts the lipophilicity, oral absorption, and biological activity. The analysis of matched molecular pairs (styryl vs. phenethyl, phenyl, methyl, H) for the biological activity indicates the superiority aspect of styryl compounds. However, the Michael acceptor site in the styryl group makes it amenable to the nucleophilic attack by biological nucleophiles and transformation to the toxic metab-olites. One of the downsides of styryl compounds is isomerization that impacts the molecular conformation and directly affects biological activity. The impact of cis-trans isomerism and isosteric replacements on biological activity is exemplified. We also discuss the styryl group-bearing drugs, clinical candidates, and fluorescent probes. Overall, the present review reveals the utility of the styryl group in medicinal chemistry and drug discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.