Floating tablets has been accepted as a process to achieve controlled drug delivery by prolonging the residence time of the dosage form at the site of absorption, thereby improving and enhancing the bioavailability of drug. The objective of present study outlines the development and characterization the floating drug delivery system of Ofloxacin to enhance its bioavailability and therapeutic efficacy, using different grades of polymer along with effervescent agent sodium bicarbonate and citric acid. Ofloxacin is a synthetic chemotherapeutic second-generation antibiotic of the fluoroquinolone class. Different tablet formulations were formulated by wet granulation technique and were evaluated for physical parameters like Tablet Thickness, Hardness, % Friability, Weight variation, Content uniformity, In vitro buoyancy, Swelling index, In vitro dissolution study and drug release mechanisms. As the concentration of the polymer in the formulations increased the release of drug decreased. Hence it was considered as suitable candidate for formulation as floating drug delivery system. Different kinetic models were applied to drug release data in order to evaluate release mechanisms and kinetics. The optimized formula F4 showed better sustained drug release with good floating properties and fitted best to be Korsmeyer-Peppas model with R2 value of 0.9575. As the n value for the Korsmeyer- Peppas model was found be more than 0.5 it follows Non-Fickian diffusion mechanism. FTIR result showed that there is no drug excipients interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.