Wildfires have become an important source of particulate matter (PM2.5 < 2.5-µm diameter), leading to unhealthy air quality index occurrences in the western United States. Since people mainly shelter indoors during wildfire smoke events, the infiltration of wildfire PM2.5 into indoor environments is a key determinant of human exposure and is potentially controllable with appropriate awareness, infrastructure investment, and public education. Using time-resolved observations outside and inside more than 1,400 buildings from the crowdsourced PurpleAir sensor network in California, we found that the geometric mean infiltration ratios (indoor PM2.5 of outdoor origin/outdoor PM2.5) were reduced from 0.4 during non-fire days to 0.2 during wildfire days. Even with reduced infiltration, the mean indoor concentration of PM2.5 nearly tripled during wildfire events, with a lower infiltration in newer buildings and those utilizing air conditioning or filtration.
Abstract. Fresh and atmospherically aged biomass-burning (BB) aerosol mass is mostly comprised of strongly lightabsorbing black carbon (BC) and of organic carbon (OC) with its light-absorbing fraction -brown carbon (BrC). There is a lack of data on the physical and chemical properties of atmospheric BB aerosols, leading to high uncertainties in estimates of the BB impact on air quality and climate, especially for BrC. The polarity of chemical compounds influences their fate in the atmosphere including wet/dry deposition and chemical and physical processing. So far, most of the attention has been given to the water-soluble (polar) fraction of BrC, while the non-polar BrC fraction has been largely ignored. In the present study, the light absorption properties of polar and non-polar fractions of fresh and aged BB emissions were examined to estimate the contribution of differentpolarity organic compounds to the light absorption properties of BB aerosols.In our experiments, four globally and regionally important fuels were burned under flaming and smoldering conditions in the Desert Research Institute (DRI) combustion chamber. To mimic atmospheric oxidation processes (5-7 days), BB emissions were aged using an oxidation flow reactor (OFR). Fresh and OFR-aged BB aerosols were collected on filters and extracted with water and hexane to study absorption properties of polar and non-polar organic species. Results of spectrophotometric measurements (absorption weighted by the solar spectrum and normalized to mass of fuel consumed) over the 190 to 900 nm wavelength range showed that the non-polar (hexane-soluble) fraction is 2-3 times more absorbing than the polar (water-soluble) fraction. However, for emissions from fuels that undergo flaming combustion, an increased absorbance was observed for the water extracts of oxidized/aged emissions while the absorption of the hexane extracts was lower for the aged emissions for the same type of fuels. Absorption Ångström exponent (AAE) values, computed based on absorbance values from spectrophotometer measurements, were changed with aging and the nature of this change was fuel dependent. The light absorption by humic-like substances (HULIS) was found to be higher in fuels characteristic of the southwestern USA. The absorption of the HULIS fraction was lower for OFR-aged BB emissions. Comparison of the light absorption properties of different-polarity extracts (water, hexane, HULIS) provides insight into the chemical nature of BB BrC and its transformation during oxidation processes.
Biomass burning (BB) emissions and their atmospheric oxidation products can contribute significantly to direct aerosol radiative forcing of climate. Limited knowledge of BB organic aerosol chemical and optical properties leads to large uncertainties in climate models. In this article, we describe the experimental setup and the main findings of a laboratory BB study aimed at comprehensive optical, physical, and chemical characterization of fresh and aged BB emissions. An oxidation flow reactor (OFR) was used to mimic atmospheric oxidation processes. The OFR was characterized in terms of OHÁ production rate, particle transmission efficiency, and characteristic lifetimes of condensible compounds. Emission factors (EFs) of main air pollutants (particulate matter, organic carbon [OC], elemental carbon [EC], carbon monoxide [CO], and nitrogen oxides [NO x ]) were determined for five globally and regionally important biomass fuels: Siberian (Russia), Florida (USA), and Malaysian peats; mixed conifer and aspen fuel from Fishlake National Forest, Utah, USA; and mixed grass and brush fuel representative of the Great Basin, Nevada, USA. Measured fuel-based EFs for OC ranged from 0.85 ± 0.24 to 6.56 ± 1.40 mg g À1 . Measured EFs for EC ranged from 0.02 ± 0.01 to 0.16 ± 0.01 mg g À1 . The ratio of organic mass to total carbon mass for fresh emissions from these fuels ranged from 1.04 ± 0.04 to 1.34 ± 0.24. The effect of OFR aging on aerosol optical properties, size distribution, and concentration is also discussed.
<p>Wildfires have become the dominant source of particulate matter (PM<sub>2.5</sub>, < 2.5 µm diameter) leading to unhealthy air quality index occurrences in the western United States. Since people mainly shelter indoors during wildfire smoke events, the infiltration of wildfire PM<sub>2.5 </sub>into indoor environments is a key determinant of human exposure, and is potentially controllable with appropriate awareness, infrastructure investment, and public education. Using time-resolved observations outside and inside over 1400 buildings from the crowdsourced PurpleAir sensor network in California, we found that infiltration ratios (indoor PM<sub>2.5 </sub>of outdoor origin/outdoor PM<sub>2.5</sub>) were reduced on average from 0.4 during non-fire days to 0.2 during wildfire days. Even with reduced infiltration, mean indoor concentration of PM<sub>2.5 </sub>nearly tripled during wildfire events, with lower infiltration in newer buildings and those utilizing air conditioning or filtration. </p>
Abstract. Fresh and atmospherically aged biomass-burning (BB) aerosol mass is mostly comprised of black carbon (BC) and organic carbon (OC) with its light-absorbing fraction -brown carbon (BrC). 10There is a lack of data on the physical and chemical properties of atmospheric BB aerosols, leading to high uncertainties in estimates of the BB impact on air quality and climate, especially for BrC. The polarity of chemical compounds influences their fate in the atmosphere including wet/dry deposition and chemical and physical processing. So far, most of the attention has been given to the water-soluble (polar) fraction of BrC, while the non-polar BrC fraction has been largely ignored. In the present study, 15 the light absorption properties of polar and non-polar fractions of fresh and aged BB emissions were examined to estimate the contribution of different-polarity organic compounds to the light absorption properties of BB aerosols.In our experiments, four globally and regionally important fuels were burned under flaming and smoldering conditions in DRI's combustion chamber. To mimic atmospheric oxidation processes (5-7 20 days), BB emissions were aged using an oxidation flow reactor (OFR). Fresh and OFR-aged BB aerosols were collected on filters and extracted with water and hexane to study absorption properties of polar and non-polar organic species. Spectrophotometric measurements over the 190 to 900 nm wavelength range showed that the non-polar (hexane-soluble) fraction is 2-3 times more absorbing than the polar (water-soluble) fraction. However, an increased absorbance was observed for the water 25 extracts of oxidized/aged emissions while the absorption of the hexane extracts was lower for the aged emissions. Comparing the absorption Ångström Exponent (AAE) values, we observed changes in the light absorption properties of BB aerosols with aging that was dependent on the fuel types. The light Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-161 Manuscript under review for journal Atmos. Chem. Phys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.