BackgroundMathematical modeling can be employed to overcome the practical difficulty of isolating the mechanisms responsible for clinical heart failure in the setting of normal left ventricular ejection fraction (HFNEF). In a human cardiovascular respiratory system (H-CRS) model we introduce three cases of left ventricular diastolic dysfunction (LVDD): (1) impaired left ventricular active relaxation (IR-type); (2) increased passive stiffness (restrictive or R-type); and (3) the combination of both (pseudo-normal or PN-type), to produce HFNEF. The effects of increasing systolic contractility are also considered. Model results showing ensuing heart failure and mechanisms involved are reported.MethodsWe employ our previously described H-CRS model with modified pulmonary compliances to better mimic normal pulmonary blood distribution. IR-type is modeled by changing the activation function of the left ventricle (LV), and R-type by increasing diastolic stiffness of the LV wall and septum. A 5th-order Cash-Karp Runge-Kutta numerical integration method solves the model differential equations.ResultsIR-type and R-type decrease LV stroke volume, cardiac output, ejection fraction (EF), and mean systemic arterial pressure. Heart rate, pulmonary pressures, pulmonary volumes, and pulmonary and systemic arterial-venous O2 and CO2 differences increase. IR-type decreases, but R-type increases the mitral E/A ratio. PN-type produces the well-described, pseudo-normal mitral inflow pattern. All three types of LVDD reduce right ventricular (RV) and LV EF, but the latter remains normal or near normal. Simulations show reduced EF is partly restored by an accompanying increase in systolic stiffness, a compensatory mechanism that may lead clinicians to miss the presence of HF if they only consider LVEF and other indices of LV function. Simulations using the H-CRS model indicate that changes in RV function might well be diagnostic. This study also highlights the importance of septal mechanics in LVDD.ConclusionThe model demonstrates that abnormal LV diastolic performance alone can result in decreased LV and RV systolic performance, not previously appreciated, and contribute to the clinical syndrome of HF. Furthermore, alterations of RV diastolic performance are present and may be a hallmark of LV diastolic parameter changes that can be used for better clinical recognition of LV diastolic heart disease.
Background: Cardiac tamponade is a condition whereby fluid accumulation in the pericardial sac surrounding the heart causes elevation and equilibration of pericardial and cardiac chamber pressures, reduced cardiac output, changes in hemodynamics, partial chamber collapse, pulsus paradoxus, and arterio-venous acid-base disparity. Our large-scale model of the human cardiovascular-respiratory system (H-CRS) is employed to study mechanisms underlying cardiac tamponade and pulsus paradoxus. The model integrates hemodynamics, whole-body gas exchange, and autonomic nervous system control to simulate pressure, volume, and blood flow.
The effectiveness of clinical diagnosis and treatment of heart failure is a direct function of clinical signs that can be measured in a patient within cost and safety constraints. Large-scale mathematical modeling can be a key tool in revealing important, measurable clinical signs of heart failure, furthering medical understanding and development of treatment. In the first part of this study we have created two models of left heart failure diastolic and systolic, using our human cardiovascular-respiratory system (H-CRS) model, and we present a comparison of the two types with emphasis on novel and differentiating clinical signs, such as tricuspid flow and septal motion. In the event of compromised left ventricular performance, mechanical left ventricular assist devices (LVAD) are often implanted to augment or completely replace the pumping action of the left ventricle (LV). One such type is the implantable rotary blood pump (iRBP). Several design issues related to the iRBP are difficult to study experimentally due to procedure complexity and limitations in animal models of heart failure [2]. Therefore, modeling has become a key tool in iRBP development. In the second part of this study, we have introduced an iRBP model based on [1]-[2] in the systolic failing heart to study the interactions. We consider optimal motor settings for different levels of LV assistance, the effects of the iRBP on the right heart, septum, and pulmonary circulation. Our model results align with those reported in [1]-[2]. Improvement in cardiac output, pulmonary congestion, and heart work are seen with the iRBP. We observe lowered septal assistance to RV and LV ejection with increasing pump speeds, elevating right ventricular (RV) work, reducing LVET, and causing ventricular mechanical dyssynchrony in ejection. These results suggest right heart compromise via the septum s reduced role with the introduction of an iRBP. This work emphasizes the critical role of modeling in heart failure and treatment studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.