This paper investigates the efficacy of automated pattern recognition methods on magnetic resonance data with the objective of assisting radiologists in the clinical diagnosis of brain tissue tumors. In this paper, the sciences of magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) are combined to improve the accuracy of the classifier, based on the multidimensional co-occurrence matrices to assess the detection of pathological tissues (tumor and edema), normal tissues (white matter -WM and gray matter -GM), and fluid (cerebrospinal fluid -CSF). The results show the ability of the classifier with iterative training to automatically and simultaneously recover tissue-specific spectral and structural patterns and achieve segmentation of tumor and edema and grading of high and low glioma tumor. Here, extreme learning machine -improved particle swarm optimization (ELM-IPSO) neural network classifier is trained with the feature descriptions in brain magnetic resonance (MR) spectra. This has the characteristics of varying the normal spectral pattern associated with tumor patterns along with imaging features. Validation was performed considering 35 clinical studies. The volumetric features extracted from the vectors of this matrix articulate some important elementary structures, which along with spectroscopic metabolite ratios discriminate the tumor grades and tissue classes. The quantitative 3D analysis reveals significant improvement in terms of global accuracy rate for automatic classification in brain tissues and discriminating pathological tumor tissue from structural healthy brain tissue.
Diabetes is a serious metabolic disorder with high rate of prevalence worldwide; the disease has the characteristics of improper secretion of insulin in pancreas that results in high glucose level in blood. The disease is also associated with other complications such as cardiovascular disease, retinopathy, neuropathy and nephropathy. The development of computer aided decision support system is inevitable field of research for disease diagnosis that will assist clinicians for the early prognosis of diabetes and to facilitate necessary treatment at the earliest. In this research study, a Traditional Chinese Medicine based diabetes diagnosis is presented based on analyzing the extracted features of panoramic tongue images such as color, texture, shape, tooth markings and fur. The feature extraction is done by Convolutional Neural Network (CNN)—ResNet 50 architecture, and the classification is performed by the proposed Deep Radial Basis Function Neural Network (RBFNN) algorithm based on auto encoder learning mechanism. The proposed model is simulated in MATLAB environment and evaluated with performance metrics—accuracy, precision, sensitivity, specificity, F1 score, error rate, and receiver operating characteristics (ROC). On comparing with existing models, the proposed CNN based Deep RBFNN machine learning classifier model outperformed with better classification performance and proving its effectiveness.
Several control strategies are proposed and developed to enhance the performance of the various underactuated systems, particularly inverted pendulum. This paper presents the dual-mode fractional-order control with a reference model for pitch and angle control of an inverted pendulum. An inertia weighted PSO is utilized for optimal tuning of the FOPID parameters to ensure an optimal balance between local and global search. A cost function of this algorithm is framed based on the error between the reference model output and actual system output along with time-domain performance criteria. The reference model-based tuning improves the performance of the controller and steady-state error tracking. In addition, an optimal state feedback LQR is implemented using pole placement design in the feedback to stabilize and improve the robustness of the inverted pendulum. Compared to the conventional PID, the proposed structure illustrates the FOPID structure has significant performance improvement in both with and without disturbance conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.