TLR2 and MyD88 signaling plays an important role in protecting the retina from staphylococcal endophthalmitis by production of the antimicrobial peptide CRAMP.
Patients treated with the immunosuppressive drug tacrolimus (FK506), which binds FK506 Binding Protein 12 (FKBP12) then inhibits the calcium-dependent phosphatase calcineurin, exhibit decreased regulatory T cells, endothelial dysfunction, and hypertension; however the mechanisms and whether altered T cell polarization play a role are unknown. Tacrolimus treatment of mice for 1 week dose-dependently decreased CD4+/FoxP3+ (regulatory T cells) and increased CD4+/IL-17+ (T helper 17) cells in the spleen, and caused endothelial dysfunction and hypertension. To determine the mechanisms, we crossed floxed FKBP12 mice with Tie2-Cre mice to generate offspring lacking FKBP12 in endothelial and hematopoietic cells only (FKBP12EC KO). Given FKBP12’s role in inhibiting TGF-β receptor activation, Tie2-Cre-mediated deletion of FKBP12 increased TGF-β receptor activation and SMAD2/3 signaling. FKBP12EC KO mice exhibited increased vascular expression of genes and proteins related to endothelial cell activation and inflammation. Serum levels of the pro-inflammatory cytokines IL-2, IL-6, IFNγ, IL-17a, IL-21, and IL-23 were increased significantly suggesting a Th17 cell-mediated inflammatory state. Flow cytometry studies confirmed this as splenocyte levels of CD4+/IL-17+ cells were increased significantly while CD4+/FoxP3+ cells were decreased in FKBP12EC KO mice. Furthermore, spleens from FKBP12EC KO mice showed increased STAT3 activation, involved in Th17 cell induction, and decreased STAT5 activation, involved in regulatory T cell induction. FKBP12EC KO mice also exhibited endothelial dysfunction and hypertension. These data suggest that tacrolimus, through its activation of TGF-β receptors in endothelial and hematopoietic cells, may cause endothelial dysfunction and hypertension by activating endothelial cells, reducing Tregs, and increasing Th17 cell polarization and inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.