The emergency use authorization (EUA) by the US-FDA for two mRNA-based vaccines BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) has brought hope of addressing the COVID-19 pandemic which has killed more than 2 million people globally. Nanotechnology has played a significant role in the success of these vaccines. Nanoparticles (NPs) aid in improving stability by protecting the encapsulated mRNA from ribonucleases and facilitate delivery of intact mRNA to the target site. The overwhelming success of these two mRNA based vaccines with ~95% efficacy in phase 3 clinical trials can be attributed to their unique nanocarrier, the "lipid nanoparticles" (LNPs). LNPs are unique compared with bilayered liposomes and provide improved stability of the cargo, possess rigid morphology, and aid in better cellular penetration. This EUA is a major milestone and showcases the immense potential of nanotechnology for vaccine delivery and for fighting against future pandemics. Currently, these two vaccines are aiding in the alleviation of the COVID-19 health crisis and demonstrate the potential utility of nanomedicine for tackling health problems at the global level.
Biosensor-based devices are pioneering in the modern biomedical applications and will be the future of cardiac health care. The coupling of artificial intelligence (AI) for cardiac monitoring-based biosensors for the point of care (POC) diagnostics is prominently reviewed here. This review deciphers the most significant machine-learning algorithms for the futuristic biosensors along with the internet of things, computational techniques and microchip-based essential cardiac biomarkers for real-time health monitoring and improving patient compliance. The present review also discusses the recently developed cardiac biosensors along with technical strategies involved in their mechanism of working and their applications in healthcare. Additionally, it provides a key for the ontogeny of an effective and supportive hierarchical protocol for clinical decision-making about personalized medicine through combinatory information analysis, and integrated multidisciplinary AI approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.