The extensive use of sensor technology in every sphere of life, along with the continuous digitization of society, makes it realistic to anticipate that the planet will soon be patched with small-sized devices all over the place in the not-too-distant future. These devices give monitoring and surveillance capabilities, as well as access to a vast digital universe of information, among other things. Finding data and information, as well as processing enquiries, is made much easier thanks to the seamless transmission of information over wireless media, which is based on the “anywhere, anytime, everywhere” paradigm that allows information to be sent anywhere, at any time. Sensing networks came into existence as a consequence of the downsizing of wireless devices that are capable of receiving information from a source, transferring it, and processing it. Sensor networks, although they share many of the features, uses, and limits of ad hoc networks, have their own set of capabilities that are unique to them. While performing their responsibilities, sensor networks must contend with a variety of security issues, including unsecured wireless channels, physical compromise, and reprogramming. Because of the small size and ubiquitous availability of wireless sensor networks, compromise attacks are the most severe kind of attack in this environment (WSNs). With the proliferation of wireless sensor networks (WSNs), it is becoming more difficult to rely only on machine learning techniques. We sought to tackle the security challenge by developing a key management system as well as a secure routing mechanism. We are building scalable key management approaches that are resistant to node compromise and node replication attacks, which we will demonstrate in our proposed study, by using deployment-driven localization of security information and leveraging distributed key management. Using a security-aware selection of the next hop on the route to the destination, we were able to design safe routing algorithms that were effective.