Preventing nosocomial infection is a major unmet need of our times. Existing air decontamination technologies suffer from demerits such as toxicity of exposure, species specificity, noxious gas emission, environment-dependent performance and high power consumption. Here, we present a novel technology called ZeBox that transcends the conventional limitations and achieves high microbicidal efficiency. In ZeBox, a non-ionizing electric field extracts naturally charged microbes from flowing air and deposits them on engineered microbicidal surfaces. The surfaces three dimensional topography traps the microbes long enough for them to be inactivated. The electric field and chemical surfaces synergistically achieve rapid inactivation of a broad spectrum of microbes. ZeBox achieved near complete kill of airborne microbes in challenge tests (5-9 log reduction) and >90% efficiency in a fully functional stem cell research facility in the presence of humans. Thus, ZeBox fulfills the dire need for a real-time, continuous, safe, trap-and-kill air decontamination technology.
Background: Despite rigorous disinfection, fumigation and air treatment, infectious microbial load has been found to circulate and survive for significant duration in health care settings. This raises significant concerns for hospital acquired infections. We have developed a novel, hybrid, trap-and-kill airborne-microbicidal technology called ZeBox which is efficient in clearing 99.999% of airborne microbial load under controlled lab conditions. In this study we evaluate the clinical performance of the ZeBox in reducing airborne and surface microbial load in two independent hospital settings.
Methods: The studies were conducted in single bed and multi bed ICU of two hospitals. Airborne and surface microbial loads were collected at pre-determined sampling sites pre- and post-deployment of the ZeBox enabled device. The Normality of data distribution was determined using the Shapiro-Wilk test. Statistical significance was determined using Students T test and Mann-Whitneys U test. Pathogenic and opportunistic organisms were characterized using 16S rDNA sequencing. Furthermore, the antibiotic sensitivity of the isolated organisms was tested against current treatments of choice across major antibiotic classes.
Results: Post-deployment, we found statistically significant reductions in both airborne and surface microbial load within the operating range of the ZeBox enabled technology . Across the both hospital ICUs, there was 90% reduction of airborne microbial load on average, and 75% reduction of surface microbial load on average, providing a low bioburden zone of roughly 10-15 feet diameter around the unit. These reduced microbial levels were maintained during the entire duration of device operation over several weeks. Many of the clinical isolates recovered from one of the hospitals were drug resistant, which highlighted the potential ability of ZeBox to eliminate drug-resistant microbes and thereby reduce the frequency of hospital acquired infections.
Conclusions: ZeBox enabled technology can significantly reduce a broad spectrum of microbial burden in air and on surfaces in clinical settings. It can thereby serve an unmet need in reducing the incidence of hospital acquired infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.