The degree to which an individual is willing to take risks i.e., risk tolerance is often cited as a significant causal element in the majority of workplace accidents. It is essential to determine the risk tolerance level of miners and utilise their risk profiles to design improved training modules, safety, recruitment, and deployment policies. This paper aims to identify the most critical factors (or features) influencing miners’ risk tolerance in the Indian coal industry and develop a robust prediction model to learn their risk tolerance levels. To do end, we first conducted a questionnaire survey representing the complete feature set (with 36 features) among 360 miners and divided their responses into five classes of risk tolerance. Next, we propose a wrapper based hybrid system that combines particle swarm optimization (PSO) and random forest (RF) to train a multi-class classifier with a subset of features. In general, the proposed system selects the best feature subset by iteratively generating different feature combinations using the PSO and training an RF classifier model to assess the effectiveness of the generated feature subsets for the F1-score. At last, we compared the PSO-RF with four traditional classification methods to evaluate its effectiveness in terms of precision, recall, F1-score, accuracy, goodness-of-fit, and area under the curve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.