Because pure cultures and a stable transformation system are not available for arbuscular mycorrhizal fungi, the role of their phosphate transporters for the symbiotic interaction with the plant up till now could not be studied. Here we report the cloning and the functional analysis of a gene encoding a phosphate transporter (PiPT) from the root endophytic fungus Piriformospora indica, which can be grown axenically. The PiPT polypeptide belongs to the major facilitator superfamily. Homology modeling reveals that PiPT exhibits twelve transmembrane helices divided into two halves connected by a large hydrophilic loop in the middle. The function of the protein encoded by PiPT was confirmed by complementation of a yeast phosphate transporter mutant. The kinetic analysis of PiPT (K m 25 M) reveals that it belongs to the high affinity phosphate transporter family (Pht1). Expression of PiPT was localized to the external hyphae of P. indica colonized with maize plant root, which suggests that external hyphae are the initial site of phosphate uptake from the soil. To understand the physiological role of PiPT, knockdown transformants of the gene were prepared using electroporation and RNA interference. Knockdown transformants transported a significantly lower amount of phosphate to the host plant than wild-type P. indica. Higher amounts of phosphate were found in plants colonized with wild-type P. indica than that of non-colonized and plants colonized with knockdown PiPT P. indica. These observations suggest that PiPT is actively involved in the phosphate transportation and, in turn, P. indica helps improve the nutritional status of the host plant.
BackgroundWith widespread resistance to antimonials in Visceral Leishmaniasis (VL) in the Indian subcontinent, Miltefosine (MIL) has been introduced as the first line therapy. Surveillance of MIL susceptibility in natural populations of Leishmania donovani is vital to preserve it and support the VL elimination program.Methodology and Principal FindingsWe measured in vitro susceptibility towards MIL and paromomycin (PMM) in L. donovani isolated from VL and PKDL, pre- and post-treatment cases, using an amastigote-macrophage model. MIL susceptibility of post-treatment isolates from cured VL cases (n = 13, mean IC50±SD = 2.43±1.44 µM), was comparable (p>0.05) whereas that from relapses (n = 3, mean IC50 = 4.72±1.99 µM) was significantly higher (p = 0.04) to that of the pre-treatment group (n = 6, mean IC50 = 1.86±0.75 µM). In PKDL, post-treatment isolates (n = 3, mean IC50 = 16.13±2.64 µM) exhibited significantly lower susceptibility (p = 0.03) than pre-treatment isolates (n = 5, mean IC50 = 8.63±0.94 µM). Overall, PKDL isolates (n = 8, mean IC50 = 11.45±4.19 µM) exhibited significantly higher tolerance (p<0.0001) to MIL than VL isolates (n = 22, mean IC50 = 2.58±1.58 µM). Point mutations in the miltefosine transporter (LdMT) and its beta subunit (LdRos3) genes previously reported in parasites with experimentally induced MIL resistance were not present in the clinical isolates. Further, the mRNA expression profile of these genes was comparable in the pre- and post-treatment isolates. Parasite isolates from VL and PKDL cases were uniformly susceptible to PMM with respective mean IC50 = 7.05±2.24 µM and 6.18±1.51 µM.ConclusionThe in vitro susceptibility of VL isolates remained unchanged at the end of MIL treatment; however, isolates from relapsed VL and PKDL cases had lower susceptibility than the pre-treatment isolates. PKDL isolates were more tolerant towards MIL in comparison with VL isolates. All parasite isolates were uniformly susceptible to PMM. Mutations in the LdMT and LdRos3 genes as well as changes in the expression of these genes previously correlated with experimental resistance to MIL could not be verified for the field isolates.
BackgroundMiltefosine (MIL) is an oral antileishmanial drug used for treatment of visceral leishmaniasis (VL) in the Indian subcontinent. Recent reports indicate a significant decline in its efficacy with a high rate of relapse in VL as well as post kala-azar dermal leishmaniasis (PKDL). We investigated the parasitic factors apparently involved in miltefosine unresponsiveness in clinical isolates of Leishmania donovani.MethodologyL. donovani isolated from patients of VL and PKDL at pretreatment stage (LdPreTx, n = 9), patients that relapsed after MIL treatment (LdRelapse, n = 7) and parasites made experimentally resistant to MIL (LdM30) were included in this study. MIL uptake was estimated using liquid chromatography coupled mass spectrometry. Reactive oxygen species and intracellular thiol content were measured fluorometrically. Q-PCR was used to assess the differential expression of genes associated with MIL resistance.ResultsLdRelapse parasites exhibited higher IC50 both at promastigote level (7.92 ± 1.30 μM) and at intracellular amastigote level (11.35 ± 6.48 μM) when compared with LdPreTx parasites (3.27 ± 1.52 μM) and (3.85 ± 3.11 μM), respectively. The percent infectivity (72 hrs post infection) of LdRelapse parasites was significantly higher (80.71 ± 5.67%, P<0.001) in comparison to LdPreTx (60.44 ± 2.80%). MIL accumulation was significantly lower in LdRelapse parasites (1.7 fold, P<0.001) and in LdM30 parasites (2.4 fold, P<0.001) when compared with LdPreTx parasites. MIL induced ROS levels were significantly lower (p<0.05) in macrophages infected with LdRelapse while intracellular thiol content were significantly higher in LdRelapse compared to LdPreTx, indicating a better tolerance for oxidative stress in LdRelapse isolates. Genes associated with oxidative stress, metabolic processes and transporters showed modulated expression in LdRelapse and LdM30 parasites in comparison with LdPreTx parasites.ConclusionThe present study highlights the parasitic factors and pathways responsible for miltefosine unresponsiveness in VL and PKDL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.