As the backbone of every blockchain application, the consensus protocol is impacted by numerous risks, namely resource requirements and energy consumption, which limit the usage of blockchain. Applications such as IoT/IIoT cannot use these high-cost consensus methods due to limited resources. Therefore, we introduce Delegated Proof of Accessibility (DPoAC), a new consensus technique that employs secret sharing, PoS with random selection, and an interplanetary file system (IPFS).DPoAC is decomposed into two stages. During the initial stage, a secret is generated by a randomly chosen super node and divided into n shares. These shares are encrypted and stored in different n nodes on the IPFS network. The nodes will compete to access these shareholders to reconstruct the secret. The winning node will be awarded block generation rights. PoS with random selection is used in the second stage to compute the appropriate hash value and construct a block with valid transactions. In this novel approach, a node with few computational resources and small stakes can still obtain block generation rights by providing access to secret shares and reconstructing the secret, making the system reasonably fair. We qualitatively analyze and compare our scheme based on performance parameters against existing mainstream consensus protocols in the context of IoT/IIoT networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.