Most of the extracellular enzymes of acidophilic bacteria and archaea are stable at acidic pH with a relatively high thermostability. There is, however, a dearth of information on their acid stability. Although several theories have been postulated, the adaptation of acidophilic proteins to low pH has not been explained convincingly. This review highlights recent developments in understanding the structure and biochemical characteristics, and production of acid-stable and calcium-independent α-amylases by acidophilic bacteria with special reference to that of Bacillus acidicola.
The α-amylase (Ba-amy) of Bacillus acidicola was fused with DNA fragments encoding partial N- and C-terminal region of thermostable α-amylase gene of Geobacillus thermoleovorans (Gt-amy). The chimeric enzyme (Ba-Gt-amy) expressed in Escherichia coli displays marked increase in catalytic efficiency [K cat: 4 × 104 s−1 and K cat/K m: 5 × 104 mL−1 mg−1 s−1] and higher thermostability than Ba-amy. The melting temperature (T m) of Ba-Gt-amy (73.8 °C) is also higher than Ba-amy (62 °C), and the CD spectrum analysis revealed the stability of the former, despite minor alteration in secondary structure. Langmuir–Hinshelwood kinetic analysis suggests that the adsorption of Ba-Gt-amy onto raw starch is more favourable than Ba-amy. Ba-Gt-amy is thus a suitable biocatalyst for raw starch saccharification at sub-gelatinization temperatures because of its acid stability, thermostability and Ca2+ independence, and better than the other known bacterial acidic α-amylases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.