ABSTRACT. Kinetics of glycerol metabolism and triglyceridelfatty acid cycling were quantified in 12 healthy, normal, appropriate-for-gestational-age (AGA) infants, eight small-for-gestational-age (SGA) infants, and five infants of insulin-dependent diabetic mothers (IDM) at less than 48 h of age. Stable isotope-labeled [2-13C]glycerol and [6,6-ZHz]glucose in combination with indirect respiratory calorimetry were used. The tracers were used as constant rate infusion and steady state isotopic enrichment of glucose, glycerol, and bicarbonate was measured by mass spectrometric methods. After a 7-to 9-h fast, the plasma glucose, glycerol, and FFA concentrations were similar in the AGA and IDM groups. In the SGA group, the plasma glucose concentration was significantly lower than that in the AGA group throughout the study, but plasma FFA and glycerol concentrations were not different from those in the AGA infants. Plasma betahydroxybutyrate concentration was significantly elevated in the AGA group compared with IDM and SGA infants (AGA 0.59 -1-0.39, SGA 0.35 + 0.09, IDM 0.33 + 0.21 mmol/L; mean f SD). The rate of appearance of glycerol was significantly elevated (p < 0.05) in SGA infants (AGA 9.47 + 2.11, IDM 9.55 + 2.14, SGA 12.15 + 3.87 pmol/kg.min). Between 80 and 90% of glycerol turnover was converted to glucose, accounting for 20% of glucose turnover with no significant difference in the three groups. Approximately 35% of glycerol carbon was recovered in the bicarbonate (COz) pool. Less than 5% of C 0 2 carbon was derived from glycerol. Estimation of triglyceride-fatty acid cycle revealed that the triglyceride energy mobilized was increased in SGA infants. Only 22-24% of the triglyceride energy released was oxidized to COz in the newborn infants; the majority (76-78%) was recycled back to the adipose tissue. These data show that lipolysis is active in the immediate neonatal period. The contribution of fat to oxidative metabolism is increased in SGA infants. The major metabolic fate of glycerol in the neonate is conversion to glucose, and glycerol is a minor contributor to oxidative metabolism. (Pediatr Res 31: [52][53][54][55][56][57][58] 1992)
This study compared whole-body leucine kinetics in endurance-trained (TRN) and sedentary (SED) control subjects. Eleven men and women (6 TRN, 5 SED) underwent a 6-h primed, constant-rate infusion of L-[1-13C]leucine. Leucine turnover and oxidation were measured using tracer dilution and by measuring 13C enrichment of expired CO2 combined with respiratory calorimetry. Whole-body leucine turnover was greater in the TRN subjects (P less than 0.004; TRN 98.3 +/- 5.0, SED 75.3 +/- 4.2 mumol.kg-1.h-1; mean +/- SE), but there was no difference between groups in leucine oxidation (TRN 13.1 +/- 0.97, SED 11.5 +/- 0.48 mumol.kg-1.h-1). Thus more leucine turnover was available for nonoxidative utilization. In addition, the TRN subjects had higher resting energy expenditures compared with the SED group, and when all subjects were included in the analysis, there was a significant correlation between energy expenditure and protein turnover (n = 11, R = 0.61, P = 0.05). Therefore the heightened resting energy expenditure in the TRN subjects may be accounted for by an increased whole-body protein turnover. These results suggest that endurance training results in increased leucine and/or protein turnover, which may contribute to the increased resting energy expenditure observed in these subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.