The reported effects of nitric oxide (NO), a signaling molecule, on the photochemical components of leaves are ambiguous. We examined the changes by a natural NO donor, S-nitrosoglutathione (GSNO). The effect of GSNO on Pisum sativum leaves was studied after a 3-hour exposure in dark, moderate (ML), or high light (HL). The NO levels in GSNO-treated samples were at their maximum under HL, compared to those under ML or dark. Most of the elevated NO was decreased by 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), a NO scavenger, confirming the NO increase. Treatment with GSNO caused inhibition of photosynthesis/respiration and restricted electron transport mediated by both photosystem (PS)II and PSI. However, the inhibition by NO-donor of PSII components was stronger than those of PSI. A marked increase in the PSI acceptor side limitation [Y(NA)] and a decrease in PSI donor side limitation [Y(ND)] indicated an upregulation of cyclic electron transport, possibly to balance the damage to PSII by GSNO. We suggest that NO aggravated the HL-induced inhibition of photosynthesis and dark respiration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.