Conjugated polymers enable the production of flexible semiconductor devices that can be processed from solution at low temperatures. Over the past 25 years, device performance has improved greatly as a wide variety of molecular structures have been studied. However, one major limitation has not been overcome; transport properties in polymer films are still limited by pervasive conformational and energetic disorder. This not only limits the rational design of materials with higher performance, but also prevents the study of physical phenomena associated with an extended π-electron delocalization along the polymer backbone. Here we report a comparative transport study of several high-mobility conjugated polymers by field-effect-modulated Seebeck, transistor and sub-bandgap optical absorption measurements. We show that in several of these polymers, most notably in a recently reported, indacenodithiophene-based donor-acceptor copolymer with a near-amorphous microstructure, the charge transport properties approach intrinsic disorder-free limits at which all molecular sites are thermally accessible. Molecular dynamics simulations identify the origin of this long sought-after regime as a planar, torsion-free backbone conformation that is surprisingly resilient to side-chain disorder. Our results provide molecular-design guidelines for 'disorder-free' conjugated polymers.
The last decade has witnessed drastic improvements of the electronic properties, environmental and operational stability, and processibility of organic semiconductors (OSCs). [1,2] Designing new materials with high carrier mobilities, μ, remains one of the main research objectives to enable faster operation and lower power consumption of circuits and addressing of advanced liquid crystal and organic lightemitting diode displays. [1,3] Yet despite exploring a wide range of material systems, charge carrier mobilities in excess of 10 cm 2 V −1 s −1 have only been achieved in very few molecular semiconductors and highly aligned polymers. [4][5][6] At present, despite significant general advances in the comprehension of transport physics, a Molecular vibrations play a critical role in the charge transport properties of weakly van der Waals bonded organic semiconductors. To understand which specific phonon modes contribute most strongly to the electron-phonon coupling and ensuing thermal energetic disorder in some of the most widely studied high-mobility molecular semiconductors, state-of-the-art quantum mechanical simulations of the vibrational modes and the ensuing electronphonon coupling constants are combined with experimental measurements of the low-frequency vibrations using inelastic neutron scattering and terahertz time-domain spectroscopy. In this way, the long-axis sliding motion is identified as a "killer" phonon mode, which in some molecules contributes more than 80% to the total thermal disorder. Based on this insight, a way to rationalize mobility trends between different materials and derive important molecular design guidelines for new high-mobility molecular semiconductors is suggested.
A general semiconductor‐independent two‐dimensional character of the carrier distribution in top‐gate polymer field‐effect transistors is revealed by analysing temperature‐dependent transfer characteristics and the sub‐bandgap absorption tails of the polymer semiconductors. A correlation between the extracted width of the density of states and the Urbach energy is presented, corroborating the 2D accumulation layer and demonstrating an intricate connection between optical measurements concerning disorder and charge transport in transistors.
Charge transport in conjugated polymer semiconductors has traditionally been thought to be limited to a low-mobility regime by pronounced energetic disorder. Much progress has recently been made in advancing carrier mobilities in field-effect transistors through developing low-disorder conjugated polymers. However, in diodes these polymers have to date not shown much improved mobilities, presumably reflecting the fact that in diodes lower carrier concentrations are available to fill up residual tail states in the density of states. Here, we show that the bulk charge transport in low-disorder polymers is limited by water-induced trap states and that their concentration can be dramatically reduced through incorporating small molecular additives into the polymer film. Upon incorporation of the additives we achieve space-charge limited current characteristics that resemble molecular single crystals such as rubrene with high, trap-free SCLC mobilities up to 0.2 cm 2 /Vs and a width of the residual tail state distribution comparable to k B T .
The ferrimagnetic spinel oxide ZnxFe3−xO4 combines high Curie temperature and spin polarization with tunable electrical and magnetic properties, making it a promising functional material for spintronic devices. We have grown epitaxial ZnxFe3−xO4 thin films (0 ≤ x ≤ 0.9) on MgO(001) substrates with excellent structural properties both in pure Ar atmosphere and an Ar/O2 mixture by laser molecular beam epitaxy and systematically studied their structural, magnetotransport and magnetic properties. We find that the electrical conductivity and the saturation magnetization can be tuned over a wide range (10 2 . . . 10 4 Ω −1 m −1 and 1.0 . . . 3.2 µB/f.u. at room temperature) by Zn substitution and/or finite oxygen partial pressure during growth. Our extensive characterization of the films provides a clear picture of the underlying physics of the spinel ferrimagnet ZnxFe3−xO4 with antiparallel Fe moments on the A and B sublattice: (i) Zn substitution removes both Fe 3+ A moments from the A sublattice and itinerant charge carriers from the B sublattice, (ii) growth in finite oxygen partial pressure generates Fe vacancies on the B sublattice also removing itinerant charge carriers, and (iii) application of both Zn substitution and excess oxygen results in a compensation effect as Zn substitution partially removes the Fe vacancies. Both electrical conduction and magnetism is determined by the density and hopping amplitude of the itinerant charge carriers on the B sublattice, providing electrical conduction and ferromagnetic double exchange between the mixed-valent Fe
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.