The impact of UV-B radiation on growth, pigmentation and certain physiological processes has been studied in a N2-fixing chromatically adapting cyanobacterium, Nostoc spongiaeforme. A brownish form (phycoerythrin rich) was found to be more tolerant to UV-B than the blue-green (phycocyanin rich) form of N. spongiaeforme. Continuous exposure to UV-B (5.5 W m-2) for 90 min caused complete killing of the blue-green strain whereas the brown strain showed complete loss of survival after 180 min. Pigment content was more strongly inhibited in the blue-green strain than in the brown. Nitrogenase activity was completely abolished in both strains within 35 min of UV-B treatment. Restoration of nitrogenase occurred upon transfer to fluorescent or incandescent light after a lag of 5-6 h, suggesting fresh synthesis of nitrogenase. Unlike the above processes, in vivo nitrate reductase activity was stimulated by UV-B treatment, the degree of enhancement being significantly higher in the blue-green strain. Like the effect of UV-B on nitrogenase, 14CO2 uptake was also completely abolished by UV-B treatment in both strains. Our findings suggest that UV-B may produce a deleterious effect on several metabolic activities of cyanobacteria, especially in cells lacking phycoerythrin. Strains containing phycoerythrin appear to be more tolerant to UV-B, probably because of their inherent property of adapting to a variety of light qualities.
Present study deals with the distribution and diversity of arbuscular mycorrhizal fungi (AMF) in naturally growing Withania somnifera and Ocimum sanctum. Variations in soil pH and moisture content (%) at different soil depths (0-10, 10-20, 20-30 and 30-40 cm) and their possible influences on AMF spore populations were studied at two sites i.e. Jaitpur and Karaiya. A total of 27 AMF species (8 Acaulospora, 1 Cetraspora, 1 Claroideoglomus, 1 Entrophospora, 1 Funneliformis, 13 Glomus, 1 Simiglomus and 1 Septoglomus) were identified. Results revealed that W. somnifera harbors relatively more AMF species (21) than O. sanctum (14). Acaulospora scrobiculata, Sep. deserticola and Sim. hoi dominated the rhizosphere of W. somnifera, while A. scrobiculata, Sep. deserticola and G. fasciculatum were predominant in O. sanctum. Spore populations, soil pH and moisture content varied significantly across soil depths. Moreover, the ability of soil to support AMF population decreased significantly with increased soil depth. Results clearly indicated the involvement of factor other than soil pH and moisture content in AMF distribution. Thus, it may be stated that overriding factor was depth, and this can be justified by fewer roots and fewer mycorrhizae in deeper soil layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.